

Data Compilation for AGR-3/4 Matrix Ring Blank Lot ARB-B1

John D. Hunn, Michael P. Trammell, and Fred C. Montgomery

Revision 0

September 2011

Prepared for the
United States Department of Energy Office of Nuclear Energy
under the
Next Generation Nuclear Plant –
Advanced Gas Reactor Fuel Development Program

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge.

Web site http://www.osti.gov/bridge

Reports produced before January 1, 1996, may be purchased by members of the public from the following source.

National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000 (1-800-553-6847) TDD 703-487-4639 Fax 703-605-6900 E-mail info@ntis.fedworld.gov

Web site http://www.ntis.gov/support/ordernowabout.htm

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange (ETDE) representatives, and International Nuclear Information System (INIS) representatives from the following source.

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831
Telephone 865-576-8401
Fax 865-576-5728
E-mail reports@adonis.osti.gov
Web site http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Data Compilation for AGR-3/4 Matrix Ring Blank Lot ARB-B1

John D. Hunn, Michael P. Trammell, and Fred C. Montgomery Oak Ridge National Laboratory

This document is a compilation of compacting and characterization data for the matrix ring blank set ARB-B1. These ring blanks were made using a graphite/resin blend of natural and synthetic graphite flake mixed with Hexion SD-1708 novolac resin (Blend I). The Blend I material was provided to Oak Ridge National Laboratory (ORNL) by Babcock & Wilcox (B&W). Thirty of the 26 mm diameter, 63 mm long solid cylindrical ring blanks were shipped from ORNL to Idaho National Laboratory (INL) for machining and possible insertion into the Advanced Gas Reactor Fuel Development and Qualification (AGR) program's third irradiation test (AGR-3/4). A previous batch of ring blanks (lot RDKRS), made from an ORNL produced graphite/resin blend of natural and synthetic graphite flake mixed with Hexion SC-1008 resole resin, has also been shipped from ORNL to INL (see data compilation report ORNL/TM-2011/127).

In the AGR-3/4 irradiation experiment, each 12.3 mm diameter, 12.5 mm long cylindrical fuel compact will contain twenty designed-to-fail (DTF) particles distributed along the centerline of the compact. The DTF coating is a high density, high anisotropy pyrocarbon coating of nominal 20 µm thickness that is deposited directly on the kernel. This coating is designed to fail early in the AGR-3/4 irradiation test, resulting in a controlled release of fission products which can be analyzed to provide data on fission product transport. The DTF will be surrounded by standard tristructural isotropic (TRISO) "driver fuel" particles. Information on the DTF and driver fuel particles can be found in ORNL/TM-2011-109, "Data Compilation for AGR-3/4 Designed-to-Fail (DTF) Fuel Particle Batch LEU03-07DTF," and ORNL/TM-2007/019, "Data Compilation for AGR-3/4 Driver Fuel Coated Particle Composite LEU03-09T." Information on the fuel compacts can be found in ORNL/TM-2011/124, "Data Compilation for AGR-3/4 Designed-to-Fail (DTF) Fuel Compact Lot (LEU03-10T-OP2/LEU03-07DTF-OP1)-Z." Each irradiation test capsule will contain four compacts stacked in a single column. Matrix ring blanks will be machined with a center bore diameter ~100 - 150 μm larger than the diameter of the fuel compacts, so that the fuel stack can be placed inside the matrix ring. The outer diameter and length of the matrix rings will also be machined. A graphite sleeve will be machined to surround the matrix ring. During irradiation, fission products released by the DTF will migrate out of the compacts into these surrounding matrix and graphite rings.

The ARB-B1 matrix ring blank set did not meet all the product specifications for compact matrix ring blanks in section 1.05 of the AGR-3/4 DTF Fuel and Capsule Component Material Specifications (SPC-1214, Rev. 1). Nineteen ring blanks had an average density slightly above the specified limit of 1.80 g/cm³. These ring blanks were used for destructive impurity analysis or retained at ORNL and the 30 shipped to INL were within the specified density limits. The average Al impurity content (24.6 ppmw) was above the specified limit of \leq 20 ppmw. In addition, one of the samples analyzed for U contamination had an abnormally high value (1.95 ppmw), which was above the specified limit of \leq 0.5 ppmw. These three non-conformances are documented in Appendices A - C. The final disposition for the ARB-B1 matrix ring blank set was to accept for possible use in the AGR-3/4 irradiation experiment.

Table of Contents

Table of Contents	4
1 Material Identification Record for ARB-B1 Ring Blanks	
2 Fabrication of ARB-B1 Ring Blanks	
3 Impurity Analysis of Matrix, Resin, and Graphite	
4 Characterization of ARB-B1 Ring Blanks	
Appendix A: Non-Conformance Report for Matrix Density	
Appendix B: Non-Conformance Report for Al Content	41
Appendix C: Non-Conformance Report for U Contamination	
Appendix D: Certificate of Conformance	

1 Material Identification Record for ARB-B1 Ring Blanks

Table 1 lists the materials used to make the ARB-B1 ring blanks. Thirty completed ring blanks were shipped to INL in July of 2011. Eight ring blanks were retained at ORNL and 12 ring blanks were consumed at ORNL for analysis of impurity content. Table 2 lists the disposition of each ring blank. The graphite/resin blend (Blend I) used to fabricate the ARB-B1 ring blanks was provided by B&W. The following page shows a copy of an email from B&W documenting the make-up of Blend I.

Table 1. Material identification record for ring blank lot ARB-B1

Sample ID Parent Material		Notes
3482	Asbury Graphite Mills	Natural graphite
KRB2000	SGL Carbon	Synthetic graphite
SD-1708	Hexion	Novolac resin
Hexa	Hexion	Hexamethylenetetramine resin hardener
Blend I	63.37 wt% 3482 15.84 wt% KRB2000 19.80 wt% SD-1708 0.99 wt% Hexa	Graphite/resin blend received from B&W on April 7, 2011 (see copy of email at end of this section)
ARB-B1-G###	Blend I	Ring blanks numbered G001 through G050
ARB-B1-Z### ARB-B1-G###		Ring blanks, numbered Z001 through Z050 One to one correspondence to G### recorded on IRF20C (section 4)

Table 2. Disposition of ARB-B1 ring blanks

Sent t	o INL	Retained at ORNL	Consumed during analysis
ARB-B1-Z001	ARB-B1-Z024	ARB-B1-Z006	ARB-B1-Z003
ARB-B1-Z002	ARB-B1-Z028	ARB-B1-Z008	ARB-B1-Z014
ARB-B1-Z004	ARB-B1-Z029	ARB-B1-Z012	ARB-B1-Z015
ARB-B1-Z005	ARB-B1-Z031	ARB-B1-Z016	ARB-B1-Z019
ARB-B1-Z007	ARB-B1-Z032	ARB-B1-Z030	ARB-B1-Z025
ARB-B1-Z009	ARB-B1-Z033	ARB-B1-Z038	ARB-B1-Z026
ARB-B1-Z010	ARB-B1-Z034	ARB-B1-Z049	ARB-B1-Z027
ARB-B1-Z011	ARB-B1-Z037	ARB-B1-Z050	ARB-B1-Z035
ARB-B1-Z013	ARB-B1-Z039		ARB-B1-Z036
ARB-B1-Z017	ARB-B1-Z042		ARB-B1-Z040
ARB-B1-Z018	ARB-B1-Z043		ARB-B1-Z041
ARB-B1-Z020	ARB-B1-Z045		ARB-B1-Z044
ARB-B1-Z021	ARB-B1-Z046		
ARB-B1-Z022	ARB-B1-Z047		
ARB-B1-Z023	ARB-B1-Z048		

From: "Treadway, Brandon D." <bdtreadway@babcock.com>

Date: April 7, 2011 7:56:28 AM EDT To: "Hunn, John D." <hunnjd@ornl.gov>

Cc: Jeffrey A Phillips < Jeffrey. Phillips@inl.gov>, "Niedzialek, Scott E."

<seniedzialek@babcock.com>

Subject: Blend I and Blend III Shipment

John,

The FedEx tracking number for the shipment of Blend I (~8 kg) is 478764566050 and will be on-site at ORNL by 10:30 am. The 8 kg of Blend III will ship today and I will provide you with its tracking number. The makeup of the two blends is:

Blend I

Pulverized Wt (lb)

75.75

Hexion SD-1708 Wt (lb)	15.00
Nat Graphite Asbury 3482 Wt (lb)	48.00
Syn Graphite SGL Carbon KRB2000 Wt (lb)	12.00
Hexa 5% of Resin (lb)	0.75
December 1 Ct. and a ct. and a ct.	10.13

Requested Size specification 10-12 micron (one pass) (Results: Beginning of run avg. = 8.76μ ; End of run avg. = 10.39μ)*

5 lbs in large Ziploc-

Packaging type bags

Blend III

Pulverized Wt (lb)	75.75
Plenco 14043 Wt (lb)	15.00
Nat Graphite Asbury 3482 Wt (lb)	48.00
Syn Graphite SGL Carbon KRB2000 Wt (lb)	12.00
Hexa 5% of Resin (lb)	0.75

Size specification 10-12 micron (one

pass) (Results: Beginning of run avg. = 9.15 μ ; End of run avg. = 9.53 μ)*
Packaging
5 lbs in large Ziploc-

type bags

Best regards,

2 Fabrication of ARB-B1 Ring Blanks

Natural graphite (Asbury Graphite Mills 3482), synthetic graphite (SGL Carbon KRB2000), thermosetting resin (Hexion SD-1708), and hexamethylenetetramine hardener were combined to make a matrix precursor graphite/resin blend (Blend I). This blend was provided to ORNL by B&W. In order to fit the required amount of graphite/resin blend into the compacting die, the density of the powder was increased by pressing cold at 800 lbs-f in a 26.2 mm diameter die and regranulating into coarser powder. This also made the material, which was initially a very fine powder, easier to transfer into the die. Compacting charges of the cold-pressed graphite/resin blend granules were weighed out and labeled ARB-B1-G001 through G052.

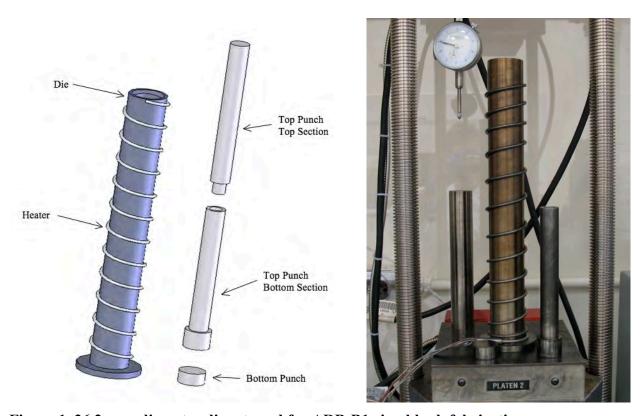


Figure 1. 26.2-mm-diameter die set used for ARB-B1 ring blank fabrication.

Ring blanks were fabricated in accordance with AGR-COMP-SOP-11R1, "Standard Operating Procedures for Production of AGR 3/4 Matrix Ring Blanks." The cold-pressed graphite/resin blend granules were compacted using a specially designed single-acting die set and a manual Carver hydraulic press (Figure 1). A coiled cable heater spiraling along the length of the die was used to heat the die and a temperature controller was used to maintain the desired die temperature. This coil heater allowed for more uniform heating along the entire die length (30 cm) compared to previously used band heaters. This was important because the matrix precursor material filled almost the entire die volume prior to pressing and the temperature of the graphite/resin blend was a critical parameter for successful compacting with the Hexion SD-1708 resin. Even with the coil heater, there was still some temperature variation over the entire length of the die. For the ARB-B1 ring blank fabrication, the lowest and highest temperatures observed on the outside surface of the die just before compacting were kept between 140 and 150°C. With

the die within this desired temperature range, the pre-slugged granules were added quickly (within 5 seconds) into the die. To reduce pressing time, the first section of the punch was inserted into the die and rapidly pressed by hand. The second punch section was then placed onto the first section and the die was inserted between the manual Carver press platens. Pressing was performed at ~3 mm/sec until a target force of 5000 lbs-f was achieved (41 MPa maximum pressure). To allow for resin curing, this position (not pressure) was maintained for 10 minutes before ejecting the ring blank from the die. A dial gauge was used to monitor the distance between the press platens during this stage. In total, 50 "green" ring blank cylinders were compacted. The green ring blanks retained the material designation of ARB-B1-G001 through G052.

Fifty green ring blanks were carbonized and heat treated according to AGR-COMP-SOP-04R0, "Standard Operating Procedure for Carbonizing Compacts," and AGR-COMP-SOP-05R1, "Standard Operating Procedure for Heat-treating Compacts." Two of the green ring blanks (G004 and G048) were rejected after compacting due to fabrication problems. Green ring blanks were slowly heated at 1°C/min to 950°C in flowing helium atmosphere and then held at 950°C for 1 hour. The heating rate was less than used for smaller diameter AGR fuel compacts (~5°C/min) or for RDKRS ring blanks (2°C/min), because extra time was needed to allow evolved gases to diffuse out of these less permeable ring blank cylinders and prevent cracking. The carbonization furnace was allowed to cool to room temperature under no power before removing the carbonized ring blanks for transfer to the heat-treatment furnace. Heat-treatment was performed under vacuum after back-filling with argon three times. Using the standard AGR compact heat-treatment process, carbonized ring blanks were heated at 20°C/min to 1800°C, held for 1 hour, cooled at < 20°C/min to 700°C, then cooled under no power to room temperature before removing. Figure 2 shows an image of a ring blank made with this process.

Figure 2. Typical ARB-B1 ring blank.

Cylinder weight and dimensions were measured after compacting, carbonization, and heat-treatment. Table 3 lists the average change after each step. All of the ring blanks shrunk in diameter after carbonization, with the change ranging from -2.2% to -1.2%. In contrast, the change in length after carbonization varied from -2.3% to +0.8%. The observation of reduced shrinkage in length or even growth in some samples was probably mostly due to the formation of fissures perpendicular to the axis of the cylinder. These fissures were visible on the surface of

some of the ring blanks (Figure 3). There was essentially no change in diameter after 1800°C heat-treatment, but length increased slightly, also possibly due to the presence of these fissures. Mass loss after carbonization was consistent, with a slight additional mass loss after heat-treatment. The total mass loss was even more consistent. The observed variation in the density was due to the variation in shrinkage along the length.

Table 3. Average percent change due to furnace treatment of ARB-B1 ring blanks

Property	As-pressed to Carbonized to 1800°C		As-pressed to 1800°C			
	Carbonized	Heat-treated	Heat-treated			
Diameter	-1.8±0.3%	0.06±0.11%	-1.7±0.3%			
Length	-0.8±0.9%	0.43±0.14%	-0.4±0.8%			
Mass	-9.7±0.2%	-0.3±0.1%	-9.95±0.17%			
Average Density	-5.6±1.3%	-0.9±0.3%	-6.4+1.2%			
± values are standard deviations from the mean						

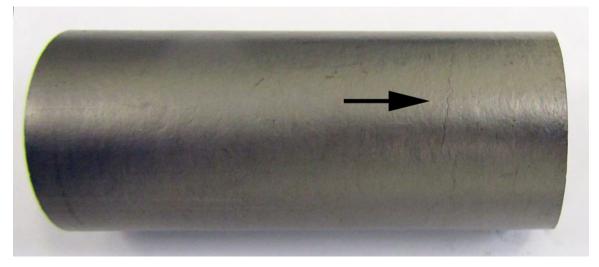


Figure 3. Fissure at surface of ARB-B1 ring blank.

For comparison, Table 4 lists the average changes observed during carbonization and heat-treatment of the RDKRS ring blanks. Variation in diametrical shrinkage and weight loss was similar between the two ring blank sets. Length change after carbonization was significantly more consistent for the RDKRS ring blanks. All the RDKRS ring blanks shrunk in length, with the percent change ranging from -2.7% to -4.1%.

Table 4. Average percent change due to furnace treatment of RDKRS ring blanks

Property	As-pressed to	Carbonized to 1800°C	As-pressed to 1800°C			
	Carbonized	Heat-treated	Heat-treated			
Diameter	-1.60±0.13%	-0.06±0.09%	-1.66±0.15%			
Length	-3.3±0.3%	0.08±0.14%	-3.2±0.3%			
Mass	-9.0±0.3%	-0.28±0.03%	-9.3±0.3%			
Average Density	-2.8±0.4%	-0.2±0.2%	-3.0±0.4%			
± values are standard deviations from the mean						

Figure 4 shows a comparison x-ray of an ARB-B1 ring blank versus an RDKRS ring blank imaged under the same conditions. The ARB-B1 ring blank x-ray shows a few large fissures similar to what can be seen on the surface of some of the cylinders, but there are also many fine low density bands perpendicular to the cylinder axis that appear to be fissures throughout the length of the ring blank. The RDKRS ring blank did not show these fissures.

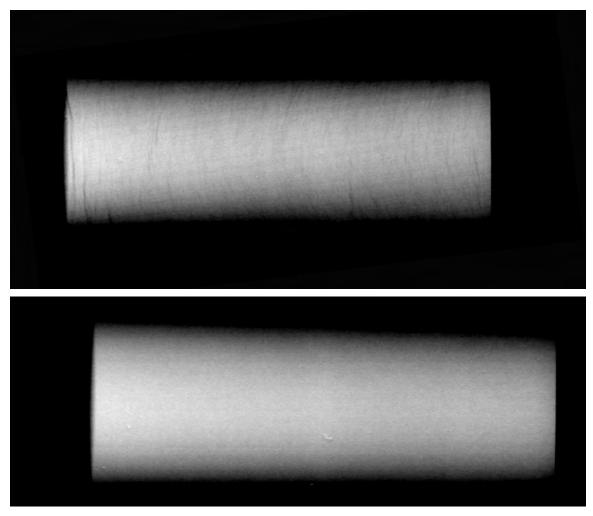


Figure 4. X-ray images of ARB-B1 ring blank (top) and RDKRS ring blank (bottom).

Figure 5 shows an x-ray image of the central section of another ARB-B1 ring blank. This image was obtained at INL using different imaging conditions which highlight the fissures more clearly. The ring blank in this image is oriented such that the end that was facing the fixed end of the die is down. There is a slight curvature to the fissures that corresponds to the dome shaped fracture surface that is observed when an ARB-B1 compact is broken. This is probably related to the way the ring blanks form in the die. Pressure is applied from the top and material is pushed to the bottom of the die with some drag along the walls.

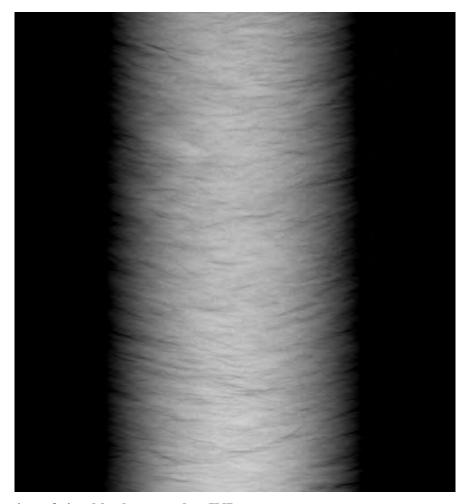


Figure 5. Section of ring blank x-rayed at INL.

After compacting, carbonization, and heat-treatment, all 50 of the heat-treated ring blanks were selected from ARB-B1-G001 through G052 for use (G004 and G048 were not heat treated due to problems with their compacting). As instructed in AGR-CHAR-PIP-20R1, "Product Inspection Plan for AGR-3/4 Ring Blank Lots," these 50 ring blanks were randomized and relabeled as ARB-B1-Z001 through Z050. However, pre-inspection of the ring blank dimensions and density indicated that 19 of the ring blanks had an average density above the specified limit of 1.80 g/cm³. This was documented on NCR-X-AGR-11-01 (see Appendix A). The disposition of this non-conformance was to segregate the 19 non-conforming ring blanks, along with 1 additional ring blank selected out because it was the longest and had the lowest density. These 20 segregated ring blanks were then randomly assigned Z-numbers specified in PIP-20 for either destructive impurity analysis or for retention as ORNL archives. The 30 remaining conforming compacts were randomly assigned Z-numbers specified in PIP-20 for shipment to INL. A record of the original G-number for each Z-numbered ring blank can be found in inspection report form IRF-20C (section 4). After relabeling, the ring blanks were characterized for product acceptance according to product inspection plan PIP-20. This plan calls for measurement of ring blank length, diameter, mass, matrix density, uranium content and impurity content. Table 5 shows the verification record for the compact fabrication process conditions used.

Table 5. Summary of process conditions used in making ARB-B1 ring blanks

		Heat-treatment parameters							
Ring blank ID	Max. Pressure (MPa)	Heating Rate (°C/min)	Max. Temp.	Hold Time (hr)	Atmosphere	Heating Rate (°C/min)	Max. Temp.	Hold Time (hr)	Atmosphere
ARB-B1-Z001	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z002	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z003	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z004	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z005	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z006	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z007	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z008	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z009	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z010	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z011	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z012	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z013	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z014	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z015	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z016	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z017	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z018	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z019	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z020	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z021	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z022	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z023	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z024	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z025	41	1	950	1	flowing He	20	1800	1	vacuum

Task Manager Review Michael Frammell	Date 8 (15/11
QAS Review M. The service of the ser	Date _ \$/15/11

Table 5 (continued). Summary of process conditions used in making ARB-B1 ring blanks

Ring blank ID		Heat-treatment parameters							
	Max. Pressure (MPa)	Heating Rate (°C/min)	Max. Temp.	Hold Time (hr)	Atmosphere	Heating Rate (°C/min)	Max. Temp.	Hold Time (hr)	Atmosphere
ARB-B1-Z026	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z027	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z028	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z029	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z030	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z031	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z032	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z033	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z034	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z035	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z036	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z037	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z038	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z039	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z040	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z041	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z042	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z043	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z044	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z045	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z046	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z047	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z048	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z049	41	1	950	1	flowing He	20	1800	1	vacuum
ARB-B1-Z050	41	1	950	1	flowing He	20	1800	1	vacuum

Task Manager Review Michael Frammell	Date 8 15 11
QAS Review	Date

3 Impurity Analysis of Matrix, Resin, and Graphite

The AGR-3/4 Fuel Specification (SPC-1214, Rev. 1) specifies maximum limits on the elemental impurities Al, Ca, Ti + V, Cr, Mn, Fe, Co, Ni, and U. The natural graphite, synthetic graphite, and thermosetting resin used to make the matrix often contain measurable amounts of these impurities. It is beneficial if the graphite and resin have low concentrations of the impurities of interest to help ensure that the ring blanks made from the graphite/resin blend will be within specification. Although the graphite/resin blend used for the ARB-B1 ring blanks was not produced at ORNL, analysis was performed on the constituents used in that blend. Glow discharge mass spectrometry (GDMS) was performed by Shiva Technologies on samples of the natural and synthetic graphite. Samples of the Hexion SD-1708 resin, hexamethylenetetramine hardener, and graphite/resin Blend I were carbonized at 950°C under helium and the carbonized powder was also measured by GDMS.

Table 6 is a summary of the specified impurity levels for the natural graphite and synthetic graphite that were used to make the ARB-B1 ring blanks, as well as the impurity levels for carbonized samples of the resin, hardener, and final graphite/resin blend.

Table 6. Matrix constituents that were used in AGR-3/4 ARB-B1 ring blanks

	Impurity concentration (ppm-wt)								
Element	SPC-1214	Natural Graphite	Synthetic Graphite	Carbonized Resin	Carbonized	Carbonized			
	Rev. 1	Asbury 3482	SGL KRB2000	Hexion SD-1708	Hexa	Blend I			
Al	≤ 20	29	0.13	8	16	28			
Ca	≤ 45	8.2	0.31	4.2	33	12			
Ti + V	≤ 85	2.75	< 0.07	0.32	5.34	1.35			
Cr	≤ 10	< 0.5	< 0.5	3.9	< 0.5	< 0.5			
Mn	≤ 10	0.55	< 0.05	0.34	0.55	0.74			
Fe	≤ 20	38	0.11	18	39	45			
Co	≤ 10	< 0.05	< 0.05	1.6	< 0.05	< 0.05			
Ni	≤ 10	0.25	0.12	2.9	1.7	1			
U	≤ 0.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			

The following pages show the full impurity analysis reports for the natural graphite, synthetic graphite, resin, hexamethylenetetramine, and Blend I samples listed in Table 6. Impurities that could not be detected above the analysis threshold value are reported as less than values (<). Values marked as less than or equal to (=<) indicate that a measurable value of the element was obtained, but that this element may have come from the Shiva sample preparation. Prior to GDMS analysis, Shiva poured the powder samples into a Teflon mold with a binder material. The binder was mostly indium, but may also have contained other elements, as indicated in the analysis report by the "=<" symbol. The resin showed very high values for F, but these were marked as semiquantitative (~) and probably came from the Teflon mold. The natural graphite and graphite/resin blend were very high in Si and also high in Mg, Al, S, and Fe. The hexamethylenetetramine was high in several impurities, but is less critical because it only makes up 1% of the graphite/resin blend.

Customer: UT-Battelle Oak Ridge P.O.# 4000100480

1 Bethel Valley Rd, Oak Ridge, TN 37823-6063 USA

Date: 6-Nov-10 *Job* # S0ABV776

Customer ID: C Sample ID: S101101057

Asbury 3482 NFG

Element	Element Concentration [ppm wt]		Concentration [ppm wt]
Li	< 0.01	Pd	< 0.1
Be	< 0.01	Ag	< 0.1
В	0.24	Cd	< 0.1
С	Matrix	ln	Binder
N	-	Sn	< 0.5
0	-	Sb	< 0.5
F	~ 20	Te	< 0.1
Na	1.5		< 20
Mg	80	Cs	< 0.1
Al	29	Ва	0.8
Si	710	La	< 0.5
Р	0.82	Ce	< 0.5
S	25	Pr	< 0.05
Cl	2.5	Nd	< 0.05
K	0.2	Sm	< 0.05
Ca	8.2	Eu	< 0.05
Sc	< 0.05	Gd	< 0.05
Ti	2.3	Tb	< 0.05
V	0.45	Dy	< 0.05
Cr	< 0.5	Но	< 0.05
Mn	0.55	Er	< 0.05
Fe	38	Tm	< 0.05
Co	< 0.05	Yb	< 0.05
Ni	0.25	Lu	< 0.05
Cu	2.5	Hf	< 0.05
Zn	0.4	Та	< 5
Ga	< 0.1	W	0.15
Ge	< 0.1	Re	< 0.05
As	< 0.1	Os	< 0.05
Se	< 0.1	Ir	< 0.05
Br	0.41	Pt	< 0.05
Rb	< 0.05	Au	< 0.1
Sr	0.08	Hg	< 0.5
Y	0.2	TI	< 0.1
Zr	0.6	Pb	< 0.5
Nb	< 0.1	Bi	< 0.1
Mo	< 0.05	Th	< 0.05
Ru	< 0.1	U	< 0.05
Rh ~ Semigrantitativ	< 0.1		

[~] Semiquantitative Values

J.SCHIEBLER (Analyst)

Customer: UT-Battelle Oak Ridge P.O.# CC

1 Bethel Valley Rd, Oak Ridge, TN 37823-6063 USA

Date: 24-Mar-11 *Job* # S0BCT802

Customer ID: C powder Sample ID: S110317087

KRB 2000

Element	Concentration	Element	Concentration
	[ppm wt]		[ppm wt]
Li	< 0.01	Pd	< 0.1
Be	< 0.01	Ag	< 0.1
В	0.19	Cd	< 0.1
С	Matrix	<u>In</u>	Binder
N	-	Sn	< 0.5
0	-	Sb	< 0.5
F	=< 10	Te	< 0.1
Na	0.92	l	< 20
Mg	< 0.5	Cs	< 0.1
Al	0.13	Ва	< 0.1
Si	3.1	La	< 0.5
Р	< 0.1	Ce	< 0.5
S	5.4	Pr	< 0.05
Cl	9.3	Nd	< 0.05
K	< 0.1	Sm	< 0.05
Ca	0.31	Eu	< 0.05
Sc	< 0.05	Gd	< 0.05
Ti	0.06	Tb	< 0.05
V	< 0.01	Dy	< 0.05
Cr	< 0.5	Но	< 0.05
Mn	< 0.05	Er	< 0.05
Fe	0.11	Tm	< 0.05
Co	< 0.05	Yb	< 0.05
Ni	0.12	Lu	< 0.05
Cu	< 0.1	Hf	< 0.05
Zn	< 0.1	Та	< 5
Ga	< 0.1	W	0.09
Ge	< 0.1	Re	< 0.05
As	< 0.1	Os	< 0.05
Se	< 0.1	lr	< 0.05
Br	< 0.1	Pt	< 0.05
Rb	< 0.05	Au	< 0.1
Sr	< 0.05	Hg	< 0.5
Y	< 0.05	Ti	< 0.1
Zr	< 0.05	Pb	< 0.5
Nb	< 0.1	Bi	< 0.1
Mo	< 0.05	Th	< 0.05
Ru	< 0.1	U	< 0.05
Rh	< 0.1		0.00
~ Semiguantitative		ı	

[~] Semiquantitative Values

Analyst,

Customer: UT-Battelle Oak Ridge P.O.# 4000100480

1 Bethel Valley Rd, Oak Ridge, TN 37823-6063 USA

Date: 6-Nov-10 *Job* # S0ABV776

Customer ID: C Sample ID: S101101061

Hexion SD-1708

Element	Concentration [ppm wt]	Element	Concentration [ppm wt]
Li	0.5	Pd	< 0.1
Be	< 0.01	Ag	< 0.1
В	0.06	Cd	< 0.1
C	Matrix	In In	Binder
N	-	Sn	< 0.5
0	_	Sb	< 0.5
F	~ 560	Te	< 0.1
Na	5.4	i	=< 60
Mg	< 0.5	Cs	< 0.1
ΑĬ	8	Ва	< 0.1
Si	18	La	=< 6
P	0.25	Ce	< 0.5
S	3.5	Pr	=< 1.5
CI	0.79	Nd	< 0.05
K	0.2	Sm	< 0.05
Ca	4.2	Eu	< 0.05
Sc	< 0.05	Gd	< 0.05
Ti	0.3	Tb	< 0.05
V	0.02	Dy	< 0.05
Cr	3.9	Ho	< 0.05
Mn	0.34	Er	< 0.05
Fe	18	Tm	< 0.05
Со	1.6	Yb	< 0.05
Ni	2.9	Lu	< 0.05
Cu	21	Hf	< 0.05
Zn	=< 2	Та	< 5
Ga	< 0.1	W	0.08
Ge	< 0.1	Re	< 0.05
As	< 0.1	Os	< 0.05
Se	< 0.1	lr	< 0.05
Br	< 0.1	Pt	< 0.05
Rb	< 0.05	Au	< 0.1
Sr	< 0.05	Hg	< 0.5
Y	0.68	TI	< 0.1
Zr	< 0.05	Pb	< 0.5
Nb	< 0.1	Bi	< 0.1
Mo	0.64	Th	< 0.05
Ru	< 0.1	U	< 0.05
Rh	< 0.1		

[~] Semiquantitative Values

J.SCHIEBLER (Analyst

Customer: UT-Battelle Oak Ridge P.O.# 4000100480

1 Bethel Valley Rd, Oak Ridge, TN 37823-6063 USA

Date: 6-Nov-10 *Job* # S0ABV776

Customer ID: C Sample ID: S101101062

Hexa

Element	Concentration [ppm wt]	Element	Concentration [ppm wt]
Li	6.4 Pd		< 0.1
Be	< 0.01	Ag	3.9
В	2.5	Cd	< 0.1
С	Matrix	ln	Binder
N	-	Sn	< 0.5
0	-	Sb	< 0.5
F	~ 960	Te	< 0.1
Na	220		=< 550
Mg	28	Cs	< 0.1
Al	16	Ва	< 0.1
Si	130	La	=< 26
Р	4.8	Ce	=< 1.2
S	44	Pr	=< 2.8
Cl	3.8	Nd	< 0.05
K	5.4	Sm	< 0.05
Ca	33	Eu	< 0.05
Sc	< 0.05	Gd	< 0.05
Ti	5.3	Tb	< 0.05
V	0.04	Dy	< 0.05
Cr	< 0.5	Ho	< 0.05
Mn	0.55	Er	< 0.05
Fe	39	Tm	< 0.05
Со	< 0.05	Yb	< 0.05
Ni	1.7	Lu	< 0.05
Cu	42	Hf	< 0.05
Zn	220	Та	< 5
Ga	< 0.1	W	1.2
Ge	< 0.1	Re	< 0.05
As	0.29	Os	< 0.05
Se	< 0.1	lr	< 0.05
Br	< 0.1	Pt	< 0.05
Rb	< 0.05	Au	< 0.1
Sr	0.16	Hg	< 0.5
Υ	< 0.05	TI	< 0.1
Zr	< 0.05	Pb	< 0.5
Nb	< 0.1	Bi	< 0.1
Mo	1.5	Th	< 0.05
Ru	< 0.1	U	< 0.05
Rh	< 0.1		

[~] Semiquantitative Values

J.SCHIEBLER (Analyst)

Customer: UT-Battelle Oak Ridge P.O.# CC

1 Bethel Valley Rd, Oak Ridge, TN 37823-6063 USA

Date: 18-Aug-11 *Job* # S0BDV257

Customer ID: C powder Sample ID: S110818033

INL Blend I

Element	Concentration [ppm wt]	Element	Concentration [ppm wt]
Li	0.55	Pd	< 0.1
Be	< 0.01	Ag	< 0.1
В	0.6	Cd	< 0.1
С	Matrix	ln	Binder
N	-	Sn	< 0.5
0	-	Sb	< 0.5
F	=< 50	Te	< 0.1
Na	5.5	I	< 20
Mg	53	Cs	< 0.1
Al	28	Ва	1.8
Si	400	La	< 0.5
Р	0.95	Ce	< 0.5
S	20	Pr	< 0.05
Cl	1.9	Nd	< 0.05
K	0.5	Sm	< 0.05
Ca	12	Eu	< 0.05
Sc	< 0.05	Gd	< 0.05
Ti	0.9	Tb	< 0.05
V	0.45	Dy	< 0.05
Cr	< 0.5	Ho	< 0.05
Mn	0.74	Er	< 0.05
Fe	45	Tm	< 0.05
Co	< 0.05	Yb	< 0.05
Ni	1	Lu	< 0.05
Cu	< 0.1	Hf	< 0.05
Zn	< 0.1	Та	< 5
Ga	< 0.1	W	0.22
Ge	< 0.1	Re	< 0.05
As	< 0.1	Os	< 0.05
Se	< 0.1	lr	< 0.05
Br	2.2	Pt	< 0.05
Rb	< 0.05	Au	< 0.1
Sr	0.13	Hg	< 0.5
Υ	0.15	ΤΪ	< 0.1
Zr	1.2	Pb	< 0.5
Nb	< 0.1	Bi	< 0.1
Mo	0.4	Th	< 0.05
Ru	< 0.1	U	< 0.05
Rh	< 0.1		

J.SCHIEBLER (Analyst)

Dozeph Suliabler

4 Characterization of ARB-B1 Ring Blanks

Ring blanks were characterized for product acceptance according to AGR-CHAR-PIP-20R1, "Product Inspection Plan for AGR-3/4 Ring Blank Lots." This plan calls for measurement of ring blank length, diameter, mass, matrix density, and impurity content. Length, diameter, and matrix density were measured on every ring blank. Maximum length was measured using a digital height gauge and the diameter at the midpoint was measured using a digital caliper. Average matrix density was calculated by weighing the ring blank and dividing the mass by the calculated volume with the assumption of cylindrical shape. It is known that local matrix density varies along the length of the cylinder due to the use of a single acting cylindrical die. When RDKRS ring blanks were sectioned perpendicular to the cylinder axis and average density of each section measured separately, a systematic decrease in the density was observed from the end facing the moving ram to the end facing the fixed ram.

Twelve ring blanks were selected for analysis of uranium and other specified impurities (Fe, Cr, Mn, Co, Ni, Ca, Al, and Ti + V). Analysis was performed on the 12 ring blanks, in four sample groups with 3 ring blanks in each sample group. Ring blanks were burned in air to reduce them to oxide ash. The ash was leached with boiling nitric acid for 24 hours, followed by a second 24 hour boiling nitric acid leach. Aliquots of each leach solution were analyzed by inductivelycoupled plasma mass spectrometry (ICP-MS). After the standard burn-leach analysis, 159 mg to 171 mg of ash residue remained. This ash residue was further analyzed by microwave-enhanced acid digestion and ICP-MS. After the microwave digestion, 116 - 128 mg residue remained. This was not analyzed further. Previous analysis was similarly applied to the RDKRS ring blanks (see Section 6 of ORNL/TM-2011/127). There was less residual ash after burn-leach of the RDKRS ring blanks (63 - 66 mg). Most of the RDKRS residual ash was dissolved by the microwave digestion. It is possible that the greater amount of residual ash from the ARB-B1 ring blanks was more than could be digested in one pass. The difference in ash content was mostly related to the difference in the silicon content in the natural graphite. There was 710 ppmw of Si in the Asbury 3482 natural graphite used for the ARB-B1 ring blanks. The Asbury RD-13371 natural graphite used for the RDKRS ring blanks contained 260 ppmw Si. The Asbury 3482 was also about 3x higher in Al, Ti, and Fe.

At the end of this section are copies of the inspection report forms (IRF) for the ARB-B1 ring blanks (IRF-20A, IRF-20B, IRF-20B-Supplemental and IRF-20C). Following the inspection report forms are the individual data report forms (DRF) for the measurements that were performed. Inspection report form IRF-20B summarizes the burn-leach results. However, because of the amount of residual ash remaining after the standard burn-leach analysis, results of from microwave digestion were included in the acceptance testing. Inspection report form IRF-20B-Supplemental adds the results of the microwave digestion to the burn-leach results and these totals are used for the calculation for product acceptance on inspection report form IRF-20A The acceptance test values on IRF-20A were calculated using a 95% confidence Student's-t test.

The overall average diameter, length, and matrix density for the ring blank lot are reported on IRF-20A, but the product compliance to these specified parameters was determined on an individual basis for each ring blank (see DRF-43). As discussed in section 2, nineteen of the ring blanks had an average density above the specified limit of 1.80 g/cm³. These are indicated by

"fail" in the rightmost column of DRF43. The disposition of these non-conforming ring blanks for use as samples for the impurity analysis or retention as ORNL archives was documented on NCR-X-AGR-11-01 (see Appendix A). All the ring blanks shipped to INL for possible use in the AGR-3/4 irradiation test were within the specified range for mean diameter, length, and matrix density. Table 7 provides a summary of these properties for the 30 ring blanks shipped to INL for possible use in the AGR-3/4 irradiation test.

Table 7. Average ring blank dimensions and density for 30 shipped to INL

Specified Dayameters		30 ARB-B1 rii	ng blanks sent to INL
Specified Parameters	mean	standard deviation	
Blank outer diameter (mm)	26.0 ± 1	25.70	0.06
Blank length (mm)	63.0 ± 2	62.3	0.5
Blank matrix density (g/cc)	1.65 ± 0.15	1.770	0.019

As expected based on the higher impurity content of the ARB-B1 graphite/resin matrix blend, compared to the RDKRS blend, impurity content in the ARB-B1 ring blanks was higher than that previously reported for the RDKRS ring blank set (ORNL/TM-2011/127). Of particular note were the Fe and Al content (Table 8). These values were higher than expected based on the difference in the impurity content between the two graphite/resin blends (Table 9). For both materials, iron content was reduced by the heat-treatment of the ring blanks, but the percent reduction in the ARB-B1 ring blanks was an order of magnitude lower. Aluminum content was not reduced by the heat-treatment as efficiently as the Fe content in either material, but for the ARB-B1 ring blanks the reduction was almost negligible. The average matrix density of the ARB-B1 ring blanks was 10% higher than the RDKRS ring blanks, but this does not seem like a large enough difference to completely explain the difference in the effectiveness of the heat-treatment. Qualitatively, the ARB-B1 ring blanks appeared more solid. It may be that the permeability of these ring blanks is lower due to the difference in the resins and/or the size of the graphite flake. It is also possible that the additional silicon in the ARB-B1 ring blanks may have bound up some of the other impurities.

Table 8. Comparison of impurity content between RDKRS and ARB-B1 ring blanks

Impurity Content Specification		Mean Cont	ARB-B1 / RDKRS	
impurity Conte	ent Specification	RDKRS	ARB-B1	AKD-DI / KDKKS
Fe	≤ 20	< 0.07	2.90	41
Cr	≤ 10	< 0.0035	0.050	14
Mn	≤ 10	< 0.0013	< 0.0011	0.8
Co	≤ 10	< 0.0009	< 0.0038	4
Ni	≤ 10	< 0.0051	< 0.0328	6
Ca	≤ 4 5	3.9	7.29	2
Al	≤ 20	1.33	24.6	18
Ti + V	≤ 85	2.06	3.98	2
U	≤ 0.5	0.017	0.1 (note 1)	6

note 1: mean U content does not include abnormal result from one sample group

Table 9. Comparison of impurity content between RDKRS and ARB-B1 graphite/resin blends after carbonization

Impurity Content Specification		Mean Cont	ARB-B1 / RDKRS	
impurity Conte	ent Specification	RDKRS	ARB-B1	AKD-D1 / KDKKS
Fe	≤ 20	12	45	4
Cr	≤ 10	< 0.5	< 0.5	1
Mn	≤ 10	0.35	0.74	2
Co	≤ 10	< 0.05	< 0.05	1
Ni	≤ 10	0.18	1	6
Ca	≤ 4 5	4.8	12	2.5
Al	≤ 20	4.3	28	6.5
Ti + V	≤ 85	0.29	1.35	5
U	≤ 0.5	< 0.05	< 0.05	1

As a result of the higher initial Al impurity content and the negligible loss of Al during heat-treatment, the average Al impurity content was slightly above the specified limit. The specified limit for aluminum is a conservative value and the measured impurity content is not expected to adversely affect the AGR-3/4 irradiation experiment. This non-conformance was documented on NCR-X-AGR-11-02 (see Appendix B) with a disposition to use the ring blanks as they are.

In addition to a non-conforming aluminum content, burn-leach and microwave digestion analysis also yielded a uranium content that was beyond the specified limit of ≤ 0.5 ppmw. Of the four sample groups analyzed (ARB-B1-Z035, -Z027, -Z040), one was determined to have an unusually high amount of uranium (1.95 ppmw). The average uranium content of the other three sample groups was 0.10 ppmw with a standard deviation of 0.03 ppmw. The data from these three groups would satisfy the specification, with a 95% confidence test value of 0.15 ppmw. However, the average for all four sample groups was 0.6 ppmw, which was above the specified limit. This non-conformance was documented on NCR-X-AGR-11-03 (see Appendix C). The discussion attached to this non-conformance report describes the issue in more detail. Additional characterization was performed, but no definitive data was available to determine the exact cause of the unusually high uranium contamination. The additional analysis described in Appendix C suggested that this was an abnormal and possibly isolated occurrence and the disposition for the non-conformance was to use the ARB-B1 ring blank set as they are.

Also discussed in the analysis of the uranium contamination in Appendix C is the observation of general contamination with natural uranium (NU) and low enriched uranium (LEU). Analysis of the uranium contamination suggested that there was a quantity of natural uranium that probably came from the natural graphite used to make the graphite/resin blend. Similar to what was observed for most of the other specified impurities, the ARB-B1 ring blanks appeared to contain 3 - 4 times more NU. Both ring blank sets also contained low enriched uranium, which was proposed to have come from uranium contamination in the graphite heat-treatment furnace. The LEU contamination was higher for the ARB-B1 ring blanks, presumably due to increasing levels of LEU contamination in the graphite furnace.

Inspection Report Form IRF-20A: AGR-3/4 Matrix Ring Blanks

Procedure:	AGR-CHAR-PIP-20 Rev. 1
Ring blank lot ID:	ARB-B1
Ring blank lot description:	Matrix Blend 1 with Hexion Durite SD-1708 resin

	Measured Data		Specification	The second secon		Pass	Data		
Property	Mean (x)	Std. Dev. (s)	Measurements (n)	Student's t value	INL SPC-1214 Revision 1	Acceptance Criteria	Acceptance Test Value	or fail	Records
Ring blank diameter	25.64	0.08	50		mean 26.0 ± 1.0	see DRF-43		pass	DRF-43
(mm)	25.04	0.08	30		dispersion 0% < 24.5	see DRF-43		pass	DKI-43
Ring blank length (mm)	61.9	0.7	50		mean 63.0 ± 2.0	see DRF-43		pass	DRF-43
Ring blank matrix density	1.79	0.03	50		mean 1.65 ± 0.15	see DRF-43		fail	DDE 42
(g/cm3)	1.79	0.03	50		dispersion 0% < 1.5	see DRF-43		pass	DRF-43
Iron content (ppmw)	2.90	0.17	4	2.353	mean ≤ 20	$B = x + ts/\sqrt{n} \le 20$	3.10	pass	IRF-20B DRF-44
Chromium content (ppmw Fe)	0.050	0.010	4	2.353	mean ≤ 10	B = x + ts/√n ≤ 10	0.06	pass	IRF-20B DRF-44
Manganese content (ppmw Mn)	0.0011	0.0001	4	2.353	mean ≤ 10	$B = x + ts/\sqrt{n} \le 10$	0.00	pass	IRF-20B DRF-44
Cobalt content (ppmw Co)	0.0038	0.0003	4	2.353	mean ≤ 10	$B = x + ts/\sqrt{n} \le 10$	0.00	pass	IRF-20B DRF-44
Nickel content (ppmw Ni)	0.0328	0.0016	4	2.353	mean ≤ 10	$B = x + ts/\sqrt{n} \le 10$	0.03	pass	IRF-20B DRF-44
Calcium content (ppmw Ca)	7.29	0.22	4	2.353	mean ≤ 45	$B = x + ts/\sqrt{n} \le 45$	7.55	pass	IRF-20B DRF-44
Aluminum content (ppmw Al)	24.6	0.4	4	2.353	mean ≤ 20	B = x + ts/√n ≤ 20	25.07	fail	IRF-20B DRF-44
Titanium plus Vanadium content (ppmw total Ti+V)	3.98	0.08	4	2.353	mean ≤ 85	$B = x + ts/\sqrt{n} \le 85$	4.07	pass	IRF-20B DRF-44
Uranium contamination (ppmw U)	0.6	0.90	4	2.353	mean ≤ 0.5	$B = x + ts/\sqrt{n} \le 0.5$	1.66	fail	IRF-20B DRF-44

Comments

Comments

Nineteen ring blanks were outside the specified range for density, with measured average densities ranging from 1.80 to 1.83 g/cc. These ring blanks were used for destructive analysis or retained at ORNL. See NCR-X-AGR-11-01. The thirty ring blanks shipped to INL were within the specified range for density.

Average aluminum content was ~25% higher than the specified limit. Disposition was to use as is. See NCR-X-AGR-11-02.

Average uranium content was ~20% higher than the specified limit. Four groups of 3 ring blanks each were analyzed. One group showed an above average U content (1.95 ppmw), indicating abnormal contamination was introduced during fabrication of one or more ring blanks in the sample or during analysis. The mean uranium content based on the other 3 sample groups is 0.10 ppmw, with a standard deviation of 0.03 ppmw, which yields a passing acceptance test value of 0.15. Disposition was to use as is. See NCR-X-AGR-11-03.

All impurity content results are from IRF-20B Supplemental, which includes analysis of residual ash left behind after nitric acid leaching.

1

July Hum	9-14-11
QC Supervisor Accept ring blank lot (Yes or No)? Yes	Date
QA Reviewer	9/15/11 Date

ORNL/TM-2011/272

Inspection Report Form IRF-20B: Summary of Impurities in Ring Blanks

Procedure:	AGR-CHAR-PIP-20 Rev. 1
Operator:	Fred Montgomery
Ring blank lot ID:	ARB-B1
Ring blank lot description:	Matrix Blend I with Hexion Durite SD-1708 resin

Ring blank ID numbers:	Z026, Z015, Z014	Z003, Z041, Z025	Z035, Z027, Z040	Z019, Z036, Z044	Mean	Standard Deviation
Uranium					Uranium	
Average impurity content in ring blanks (ppmw)	0.075	0.044	1.925	0.088	0.5	0.9
Iron					Ir	on
Average impurity content in ring blanks (ppmw)	2.434	2.429	2.424	2.138	2.36	0.15
Chromium			and the same		Chro	mium
Average impurity content in ring blanks (ppmw)	0.062	0.048	0.040	0.044	0.049	0.009
Manganese					Mang	anese
Average impurity content in ring blanks (ppmw)	< 0.0008	< 0.0008	< 0.0007	< 0.0009	< 0.0008	0.0001
Cobalt					Cobalt	
Average impurity content in ring blanks (ppmw)	< 0.0028	< 0.0026	< 0.0025	< 0.0023	< 0.0026	0.0002
Nickel						ckel
Average impurity content in ring blanks (ppmw)	< 0.0277	0.0284	< 0.0258	< 0.0271	< 0.0272	0.0011
Calcium					Cale	cium
Average impurity content in ring blanks (ppmw)	4.335	4.522	4.276	4.494	4.41	0.12
Aluminum					Alun	ninum
Average impurity content in ring blanks (ppmw)	13.002	13.797	13.119	12.870	13.2	0.4
Titanium					Tita	nium
Average impurity content in ring blanks (ppmw)	1.348	1.249	1.296	1.275	1.29	0.04
Vanadium					Vana	dium
Average impurity content in ring blanks (ppmw)	2.124	2.125	2.080	2.076	2.10	0.03
Titanium plus Vanadium					Titanium pl	us Vanadium
Average impurity content in ring blanks (ppmw)	3.473	3.374	3.375	3.351	3.39	0.05

After burning and leaching with nitric acid, a white ash remained in the leach vessel. These impurity analysis results do not include content of the ash. This ash was mostly silica, but also contained a significant amount of alumina.

The third group of ring blanks showed an above average U content indicating abnormal contamination was introduced during fabrication of the sample or during analysis. The mean uranium content based on the other 3 sample groups is 0.07 ppmw, with a standard deviation of 0.02 ppmw.

Inspection Report Form IRF-20B Supplemental: Summary of Impurities in Ring Blanks Including Analysis of Ash Residue

Procedure:	AGR-CHAR-PIP-20 Rev. 1
Operator:	Fred Montgomery
Ring blank lot ID:	ARB-B1
Ring blank lot description:	Matrix Blend I with Hexion Durite SD-1708 resin

Ring blank ID numbers:	Z026, Z015, Z014	Z003, Z041, Z025	Z035, Z027, Z040	Z019, Z036, Z044	Mean	Standard Deviation
Uranium					Urai	nium
Impurity content detected by acid leach (ppmw)	0.075	0.044	1.925	0.088	0.5	0.9
Impurity content detected in ash (ppmw)	0.033	0.022	0.029	0.039	0.031	0.007
Total impurity content in ring blanks (ppmw)	0.107	0.066	1.954	0.127	0.6	0.9
Iron					Ir	on
Impurity content detected by acid leach (ppmw)	2.434	2.429	2.424	2.138	2.36	0.15
Impurity content detected in ash (ppmw)	0.536	0.610	0.509	0.518	0.54	0.05
Total impurity content in ring blanks (ppmw)	2.969	3.040	2.932	2.656	2.90	0.17
Chromium					Chro	mium
Impurity content detected by acid leach (ppmw)	0.062	0.048	0.040	0.044	0.049	0.009
Impurity content detected in ash (ppmw)	0.0013	0.0011	0.0008	0.0008	0.0010	0.0002
Total impurity content in ring blanks (ppmw)	0.063	0.049	0.041	0.045	0.050	0.010
Manganese						anese
Impurity content detected by acid leach (ppmw)	< 0.0008	< 0.0008	< 0.0007	< 0.0009	< 0.0008	0.0001
Impurity content detected in ash (ppmw)	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	0.0000
Total impurity content in ring blanks (ppmw)	< 0.0010	< 0.0011	< 0.0010	< 0.0011	< 0.0011	0.0001
Cobalt						balt
Impurity content detected by acid leach (ppmw)	< 0.0028	< 0.0026	< 0.0025	< 0.0023	< 0.0026	0.0002
Impurity content detected in ash (ppmw)	0.0013	0.0013	0.0012	0.0012	0.0013	0.0001
Total impurity content in ring blanks (ppmw)	< 0.0041	< 0.0040	< 0.0037	< 0.0036	< 0.0038	0.0003
Nickel						kel
Impurity content detected by acid leach (ppmw)	< 0.0277	0.0284	< 0.0258	< 0.0271	< 0.0272	0.0011
Impurity content detected in ash (ppmw)	0.0060	0.0053	0.0046	0.0062	0.0055	0.0007
Total impurity content in ring blanks (ppmw)	< 0.0337	0.0337	< 0.0304	< 0.0333	< 0.0328	0.0016
Calcium					cium	
Impurity content detected by acid leach (ppmw)	4.335	4.522	4.276	4.494	4.41	0.12
Impurity content detected in ash (ppmw)	2.833	2.787	2.822	3.096	2.88	0.14
Total impurity content in ring blanks (ppmw)	7.168	7.309	7.098	7.590	7.29	0.22
Aluminum	7.100	7.505	7.050	7.550		ninum
Impurity content detected by acid leach (ppmw)	13.002	13.797	13.119	12.870	13.2	0.4
Impurity content detected in ash (ppmw)	11.773	10.870	10.935	12.088	11.4	0.6
Total impurity content in ring blanks (ppmw)	24.774	24.667	24.055	24.958	24.6	0.4
Titanium	641774	24.007	21.000	241900		nium
Impurity content detected by acid leach (ppmw)	1.348	1.249	1.296	1.275	1.29	0.04
Impurity content detected by acid reach (ppmw)	0.589	0.582	0.551	0.507	0.56	0.04
Total impurity content in ring blanks (ppmw)	1.937	1.830	1.846	1.782	1.85	0.06
Vanadium	11997	11000	21010	11702		dium
Impurity content detected by acid leach (ppmw)	2.124	2.125	2.080	2.076	2.10	0.03
Impurity content in residual ash (ppmw)	0.028	0.032	0.031	0.027	0.030	0.002
Total impurity content in ring blanks (ppmw)	2.152	2.157	2.111	2.103	2.13	0.002
Titanium plus Vanadium	2.172	21207	41444	2.100		us Vanadium
Impurity content detected by acid leach (ppmw)	3.473	3.374	3.375	3.351	3.39	0.05
Impurity content detected by acid leach (ppmw)	0.617	0.614	0.582	0.534	0.59	0.04
Total impurity content in ring blanks (ppmw)	4.089	3.988	3.957	3.885	3.98	0.08

Comments

Total impurity content in this table is the sum of the impurities detected by the standard burn-leach procedure plus the impurities detected by microwave digestion of the ash residue remaining after the standard burn-leach in nitric acid. Approximately 75 wt% of the residual ash remained after microwave digestion. In addition to the impurities reported in the table, appreciable amounts of Si, Ba, Mg, and Zr were also detected in the ash.

July Arman QC Supervisor

Inspection Report Form IRF-20C: Ring Blank Tracking

Procedure:	AGR-CHAR-PIP-20 Rev. 1
Ring blank lot ID:	ARB-B1
Ring blank lot description:	Matrix Blend 1 with Hexion Durite SD-1708 resin

Ring Blank Z Number	Ring Blank G Number
Z001	G023
Z002	G003
Z003	G012
Z004	G006
Z005	G025
Z006	G041
Z007	G037
Z008	G029
Z009	G014
Z010	G031
Z011	G001
Z012	G046
Z013	G036
Z014	G038
Z015	G013

Ring Blank	Ring Blank
Z Number	G Number
Z016	G051
Z017	G017
Z018	G032
Z019	G016
Z020	G028
Z021	G002
Z022	G027
Z023	G026
Z024	G008
Z025	G052
Z026	G042
Z027	G018
Z028	G020
Z029	G019
Z030	G049

Ring Blank Z Number	Ring Blank G Number
Z031	G024
Z032	G015
Z033	G039
Z034	G044
Z035	G047
Z036	G040
Z037	G050
Z038	G021
Z039	G034
Z040	G010
Z041	G043
Z042	G007
Z043	G009
Z044	G045
Z045	G005

Ring Blank Z Number	Ring Blank G Number
Z046	G030
Z047	G022
Z048	G033
Z049	G011
Z050	G035
Z051	
Z052	
Z053	
Z054	
Z055	
Z056	
Z057	
Z058	
Z059	
Z060	

Comments

Nineteen (19) ring blanks had an average matrix density above 1.8 g/cc. These 19 blanks plus the longest blank (G021) were separated from the lot and randomly assigned the 20 Z-numbers specified by PIP-20 for archive or burn-leach analysis. The remaining 30 Z-numbers were randomly assigned to the other ring blanks.

July 18-9-11
Operator Bate

Data Report Form DRF-43: Matrix Ring Blank Diameter, Length, and Matrix Density

Procedure:	AGR-CHAR-DAM-43 Rev. 0
Operator:	Dunbar
Ring blank lot ID:	ARB-B1
Ring blank lot description:	Matrix Blend 1 with Hexion Durite SD-1708 resin
Filename:	\\mc-agr\AGR\CompactDimensions\ringblanklotID_DRF43R0.xls

Vertical height gauge calibration due date: 3/24/12	
Digital caliper calibration due date: 5/5/12	
Gauge blocks calibration due date: 2/27/13	
Analytical balance calibration due date: 11/3/11	

Acceptance criteria for ring blank length: ≥61.0 and ≤65.0 mm

Acceptance criteria for ring blank diameter: ≥25.0 and ≤27.0 mm

Acceptance criteria for ring blank matrix density: ≥1.50 and ≤1.80 g/cm3

162,382 9H 8-9-11 ,1.76 9H 8-9					1.76 DH 8-9-			
Ring Blank	Weight	Length		Diameter (mm)		Volume	Matrix Density	Accept?
Z Number	(g)	(mm) /	Middle 1	Middle 2	Average	(cm3)	(g/cm3)/	(pass or fail)
Z001	57.1101	-63.382	25.76	25.75	25.76	33.020	-1.73	pass
Z002	57.1694	62.994	25.79	25.78	25.79	32.895	1.74	pass
Z003	57.1528	60.986	25.58	25.56	25.57	31.317	1.82	fail
Z004	57.0601	62.424	25.72	25.71	25.72	32.420	1.76	pass
Z005	57.0568	62.708	25.73	25.71	25.72	32.580	1.75	pass
Z006	56.9543	61.446	25.60	25.57	25.59	31.590	1.80	fail
Z007	57.0283	61.747	25.61	25.60	25.61	31.795	1.79	pass
Z008	57.2630	61.295	25.57	25.57	25.57	31.476	1.82	fail
Z009	57.2891	61.815	25.67	25.64	25.66	31.954	1.79	pass
Z010	56.9445	61.864	25.60	25.60	25.60	31.843	1.79	pass
Z011	57.1845	62.527	25.75	25.74	25.75	32.549	1.76	pass
Z012	56.9221	61.306	25.58	25.54	25.56	31.457	1.81	fail
Z013	56.9575	61.725	25.59	25.56	25.58	31.709	1.80	pass
Z014	57.0036	61.330	25.57	25.58	25.58	31.506	1.81	fail
Z015	57.0823	61.057	25.55	25.53	25.54	31.280	1.82	fail
Z016	56.8750	61.208	25.54	25.55	25.55	31.370	1.81	fail
Z017	57.3976	62.017	25.73	25.74	25.74	32.259	1.78	pass
Z018	57.0848	61.546	25.69	25.67	25.68	31.877	1.79	pass
Z019	57.2479	61.418	25.59	25.58	25.59	31.576	1.81	fail
Z020	57.1220	62.510	25.69	25.68	25.69	32,389	1.76	pass
Z021	57.3822	63.172	25.82	25.82	25.82	33.077	1.73	pass
Z022	56.9280	62.302	25.74	25.68	25.71	32.344	1.76	pass
Z023	57.1619	62.189	25.67	25.67	25.67	32.185	1.78	pass
Z024	57.4121	62.901	25.76	25.77	25.77	32,795	1.75	pass
Z025	56.8281	61.015	25.53	25.54	25.54	31.246	1.82	fail
Z026	56.9123	61.217	25.52	25.53	25.53	31.325	1.82	fail
Z027	57.2206	61.713	25.61	25.60	25.61	31.777	1.80	fail
Z028	57.3282	63.373	25.78	25.79	25.79	33.092	1.73	pass
Z029	57.4361	62.184	25.75	25.72	25.74	32.346	1.78	pass
Z030	56.9578	61.080	25.55	25.55	25.55	31.316	1.82	fail

Comments

19 compacts had average matrix density above 1.8 g/cc. These compacts were used for impurity analysis or retained in ORNL archive. 30 compacts shipped to INL met all specified criteria for length, diameter, and matrix density.

100	7-14-11
Operator	Date
July Alm	8-9-11
QC Supervisor	Date
QA Reviewer	8/9/11 Date

Data Report Form DRF-43: Matrix Ring Blank Diameter, Length, and Matrix Density

Procedure:	AGR-CHAR-DAM-43 Rev. 0
Operator:	Dunbar
Ring blank lot ID:	ARB-B1
Ring blank lot description:	Matrix Blend 1 with Hexion Durite SD-1708 resin
Filename:	\\mc-agr\AGR\CompactDimensions\ringblanklotID_DRF43R0.xls

Г	Vertical height gauge calibration due date: 3/24/12
	Digital caliper calibration due date: 5/5/12
Г	Gauge blocks calibration due date: 2/27/13
Г	Analytical balance calibration due date: 11/3/11

Acceptance criteria for ring blank length: ≥61.0 and ≤65.0 mm

Acceptance criteria for ring blank diameter: ≥25.0 and ≤27.0 mm

Acceptance criteria for ring blank matrix density: ≥1.50 and ≤1.80 g/cm3

Ring Blank	Weight	Length	Diameter (mm)		Volume	Matrix Density	Accept?	
Z Number	(g)	(mm)	Middle 1	Middle 2	Average	(cm3)	(g/cm3)	(pass or fail)
Z031	57.0122	62.223	25.72	25.70	25.71	32.303	1.76	pass
Z032	57.1110	61.687	25.66	25.65	25.66	31.888	1.79	pass
Z033	57.0370	61.901	25.61	25.61	25.61	31.886	1.79	pass
Z034	56.9333	61.400	25.69	25.54	25.62	31.641	1.80	pass
Z035	57.0864	61.001	25.53	25.53	25.53	31.227	1.83	fail
Z036	57.0397	61.625	25.57	25.57	25.57	31.645	1.80	fail
Z037	56.8938	62.411	25.61	25.61	25.61	32.149	1.77	pass
Z038	57.2621	63.587	25.73	25.75	25.74	33.088	1.73	pass
Z039	57.0215	62.057	25.68	25.67	25.68	32.129	1.77	pass
Z040	57.1444	61.413	25.58	25.58	25.58	31.561	1.81	fail
Z041	56.9390	61.102	25.53	25.52	25.53	31.266	1.82	fail
Z042	57.4184	62.256	25.71	25.71	25.71	32.320	1.78	pass
Z043	57.2767	62.104	25.70	25.71	25.71	32.229	1.78	pass
Z044	56.9975	61.379	25.59	25.55	25.57	31.519	1.81	fail
Z045	57.1164	62.475	25.77	25.74	25.76	32.548	1.75	pass
Z046	57.0645	62.170	25.82	25.61	25.72	32.288	1.77	pass
Z047	57.2916	62.763	25.74	25.74	25.74	32.660	1.75	pass
Z048	57.0247	61.954	25.63	25.63	25.63	31.964	1.78	pass
Z049	56.9952	60.829	25.56	25.53	25.55	31.175	1.83	fail
Z050	57.0537	61.316	25.58	25.56	25.57	31.487	1.81	fail
Z051								
Z052								
Z053								
Z054								
Z055					- F1			
Z056								
Z057								
Z058								
Z059								
Z060								

Comments

19 compacts had average matrix density above 1.8 g/cc. These compacts were used for impurity analysis or retained in ORNL archive. 30 compacts shipped to INL met all specified criteria for length, diameter, and matrix density.

Operator	7-14-// Date
QC Supervisor	8 - 9 - Date
OA Reviewer	8/9/11 Date

Procedure:	AGR-CHAR-DAM-44 Rev. 0
Operator:	Fred Montgomery
Ring blank lot ID:	ARB-B1
Ring blank lot description:	Matrix Blend I with Hexion Durite SD-1708 resin
Ring blank ID numbers:	Z026, Z015, Z014
DRF filename:	\\mc-agr\AGR\LeachBurnLeach\ARB-B1_DRF44R0.xlsx

		First Leach	Second Leach	Total	
	Leach solution ID:	B11072601	B11072901	T	
	Number of ring blanks in sample group:		3		
	Total weight of ring blanks in sample group (g):	17	1.0		
	Total volume of leach solution (ml):	31.0	37.8		
	Radiochemical laboratory analysis number:	3885-001	3885-006		
		2015.01	4 655 00		
	Measured concentration of impurity in solution (μg/ml):	3.91E-01	1.65E-02	U	
U	Weight of impurity in sample group (µg):	12.12	0.62	0.0745	
_	Average concentration of impurity in ring blanks (ppmw):	0.0709	0.0036	0.0745	
	Measured concentration of impurity in solution (μg/ml):	1.25E+01	7.58E-01	Fe	
Fe	Weight of impurity in sample group (μg):	387.50	28.65		
	Average concentration of impurity in ring blanks (ppmw):	2.2661	0.1676	2.4337	
	Measured concentration of impurity in solution (µg/ml):	3.21E-01	1.71E-02	Cr	
Cr	Weight of impurity in sample group (µg):	9.95	0.65		
	Average concentration of impurity in ring blanks (ppmw):	0.0582	0.0038	0.0620	
	Measured concentration of impurity in solution (µg/ml):	< 1.91E-03	< 1.91E-03	Mn	
Mn	Weight of impurity in sample group (μg):	< 0.06	< 0.07		
-	Average concentration of impurity in ring blanks (ppmw):	< 0.0003	< 0.0004	< 0.0008	
	Measured concentration of impurity in solution (µg/ml):	1.34E-02	< 1.62E-03	0-	
Co	Weight of impurity in sample group (µg):	0.42	< 0.06	Co	
	Average concentration of impurity in ring blanks (ppmw):	0.0024	< 0.0004	< 0.0028	
	Measured concentration of impurity in solution (µg/ml):	1.43E-01	< 8.00E-03		
Ni	Weight of impurity in sample group (µg):	4.43	< 0.30	Ni	
	Average concentration of impurity in ring blanks (ppmw):	0.0259	< 0.0018	< 0.0277	
	Measured concentration of impurity in solution (µg/ml):	2.19E+01	1.65E+00		
Ca	Weight of impurity in sample group (µg):	678.90	62.37	Ca	
	Average concentration of impurity in ring blanks (ppmw):	3.9702	0.3647	4.3350	
	Measured concentration of impurity in solution (µg/ml):	6.55E+01	5.10E+00		
AI T	Weight of impurity in sample group (µg):	2030.50	192.78	Al	
	Average concentration of impurity in ring blanks (ppmw):	11.8744	1.1274	13.0018	
	Measured concentration of impurity in solution (µg/ml):	6.82E+00	5.06E-01	-	
Ti T	Weight of impurity in sample group (µg):	211.42	19.13	Ti	
	Average concentration of impurity in ring blanks (ppmw):	1.2364	0.1119	1.3482	
	Measured concentration of impurity in solution (µg/ml):	1.13E+01	3.43E-01		
v	Weight of impurity in sample group (µg):	350.30	12.97	V	
v	Average concentration of impurity in ring blanks (ppmw):	2.0486	0.0758	2.1244	

Weight of ash after nitric acid leaching was 0.171 g.

Data checked by FCM against the official results of analyses for RMAL3885 on 8/16/2011.

Frederick C. Montgomery

9-1-2011

Procedure:	AGR-CHAR-DAM-44 Rev. 0
Operator:	Fred Montgomery
Ring blank lot ID:	ARB-B1
Ring blank lot description:	Matrix Blend I with Hexion Durite SD-1708 resin
Ring blank ID numbers:	Z003, Z041, Z025
DRF filename:	\mc-agr\AGR\LeachBurnLeach\ARB-B1_DRF44R0.xlsx

		First Leach	Second Leach	Total	
	Leach solution ID:	B11072602	B11072902		
	Number of ring blanks in sample group:		3		
	Total weight of ring blanks in sample group (g):		70.9		
	Total volume of leach solution (ml):	35.6	40.0		
	Radiochemical laboratory analysis number:	3885-002	3885-007		
	Measured concentration of impurity in solution (µg/ml):	1.99E-01	1.00E-02	U	
U	Weight of impurity in sample group (μg):	7.08	0.40		
	Average concentration of impurity in ring blanks (ppmw):	0.0414	0.0023	0.0438	
	Measured concentration of impurity in solution (µg/ml):	1.08E+01	7.69E-01	Fe	
Fe	Weight of impurity in sample group (µg):	384.48	30.76		
	Average concentration of impurity in ring blanks (ppmw):	2.2495	0.1800	2.4295	
	Measured concentration of impurity in solution (µg/ml):	2.14E-01	1.35E-02		
Cr	Weight of impurity in sample group (µg):	7.62	0.54	Cr	
	Average concentration of impurity in ring blanks (ppmw):	0.0446	0.0032	0.0477	
	Measured concentration of impurity in solution (µg/ml):	< 1.91E-03	< 1.91E-03	Mn	
Mn	Weight of impurity in sample group (µg):	< 0.07	< 0.08		
	Average concentration of impurity in ring blanks (ppmw):	< 0.0004	< 0.0004	< 0.0008	
	Measured concentration of impurity in solution (µg/ml):	1.09E-02	< 1.62E-03	140	
Co	Weight of impurity in sample group (µg):	0.39	< 0.06	Co	
	Average concentration of impurity in ring blanks (ppmw):	0.0023	< 0.0004	< 0.0026	
	Measured concentration of impurity in solution (µg/ml):	1.27E-01	8.28E-03		
Ni	Weight of impurity in sample group (µg):	4.52	0.33	Ni	
	Average concentration of impurity in ring blanks (ppmw):	0.0265	0.0019	0.0284	
	Measured concentration of impurity in solution (µg/ml):	1.99E+01	1.61E+00		
Ca	Weight of impurity in sample group (µg):	708.44	64.40	Ca	
	Average concentration of impurity in ring blanks (ppmw):	4.1449	0.3768	4.5217	
	Measured concentration of impurity in solution (µg/ml):	6.06E+01	5.02E+00		
AI	Weight of impurity in sample group (µg):	2157.36	200.80	Al	
	Average concentration of impurity in ring blanks (ppmw):	12.6221	1.1748	13.7969	
	Measured concentration of impurity in solution (µg/ml):	5.39E+00	5.38E-01		
Ti T	Weight of impurity in sample group (µg):	191.88	21.52	Ti	
	Average concentration of impurity in ring blanks (ppmw):	1.1227	0.1259	1.2486	
	Measured concentration of impurity in solution (µg/ml):	9.96E+00	2.17E-01		
V	Weight of impurity in sample group (µg):	354.58	8.68	V	
' -	Average concentration of impurity in ring blanks (ppmw):	2.0745	0.0508	2.1253	

			en	
_	~	***		

Weight of ash after nitric acid leaching was 0.159 g.

Data checked by FCM against the official results of analyses for RMAL3885 on 8/16/2011.

Frederick C. Montgomery

9-1-2011

Procedure:	AGR-CHAR-DAM-44 Rev. 0
Operator:	Fred Montgomery
Ring blank lot ID:	ARB-B1
Ring blank lot description:	Matrix Blend I with Hexion Durite SD-1708 resin
Ring blank ID numbers:	Z035, Z027, Z040
DRF filename:	\\mc-agr\AGR\LeachBurnLeach\ARB-B1_DRF44R0.xlsx

		First Leach	Second Leach	Total
	Leach solution ID:	B11072603	B11072903	THE RESERVE
	Number of ring blanks in sample group:		3	
	Total weight of ring blanks in sample group (g):	17	1.5	
	Total volume of leach solution (ml):	32.8	32.5	
-		THE RESERVE		
	Radiochemical laboratory analysis number:	3885-003	3885-008	
	Measured concentration of impurity in solution (µg/ml):	9.75E+00	3.16E-01	
U	Weight of impurity in sample group (µg):	319.80	10.27	U
	Average concentration of impurity in ring blanks (ppmw):	1.8653	0.0599	1.9252
	Measured concentration of impurity in solution (µg/ml):	1.17E+01	9.77E-01	
Fe	Weight of impurity in sample group (µg):	383.76	31.75	Fe
	Average concentration of impurity in ring blanks (ppmw):	2.2383	0.1852	2.4235
	Measured concentration of impurity in solution (µg/ml):	2.00E-01	1.12E-02	
Cr	Weight of impurity in sample group (µg):	6.56	0.36	Cr
	Average concentration of impurity in ring blanks (ppmw):	0.0383	0.0021	0.0404
	Measured concentration of impurity in solution (µg/ml):	< 1.91E-03	< 1.91E-03	
Mn	Weight of impurity in sample group (µg):	< 0.06	< 0.06	Mn
-	Average concentration of impurity in ring blanks (ppmw):	< 0.0004	< 0.0004	< 0.0007
	Measured concentration of impurity in solution (µg/ml):	1.16E-02	< 1.62E-03	
Co	Weight of impurity in sample group (µg):	0.38	< 0.05	Co
	Average concentration of impurity in ring blanks (ppmw):	0.0022	< 0.0003	< 0.0025
	Measured concentration of impurity in solution (µg/ml):	1.27E-01	< 8.00E-03	200
Ni	Weight of impurity in sample group (µg):	4.17	< 0.26	Ni
	Average concentration of impurity in ring blanks (ppmw):	0.0243	< 0.0015	< 0.0258
	Measured concentration of impurity in solution (µg/ml):	2.05E+01	1.87E+00	
Ca	Weight of impurity in sample group (µg):	672.40	60.78	Ca
	Average concentration of impurity in ring blanks (ppmw):	3.9218	0.3545	4.2763
	Measured concentration of impurity in solution (µg/ml):	6.28E+01	5.83E+00	
AI T	Weight of impurity in sample group (µg):	2059.84	189.48	Al
	Average concentration of impurity in ring blanks (ppmw):	12.0141	1.1051	13.1193
	Measured concentration of impurity in solution (µg/ml):	6.15E+00	6.28E-01	
Ti	Weight of impurity in sample group (µg):	201.72	20.41	Ti
	Average concentration of impurity in ring blanks (ppmw):	1.1765	0.1190	1.2956
	Measured concentration of impurity in solution (µg/ml):	1.05E+01	3.74E-01	
V	Weight of impurity in sample group (µg):	344.40	12.16	V
	Average concentration of impurity in ring blanks (ppmw):	2.0087	0.0709	2.0796

Comments

Weight of ash after nitric acid leaching was 0.167 g.

Data checked by FCM against the official results of analyses for RMAL3885 on 8/16/2011.

Frederick C. Montgomery

9-1-2011

Procedure:	AGR-CHAR-DAM-44 Rev. 0
Operator:	Fred Montgomery
Ring blank lot ID:	ARB-B1
Ring blank lot description:	Matrix Blend I with Hexion Durite SD-1708 resin
Ring blank ID numbers:	Z019, Z036, Z044
DRF filename:	\\mc-agr\AGR\LeachBurnLeach\ARB-B1_DRF44R0.xlsx

		First Leach	Second Leach	Total
	Leach solution ID:	B11072604	B11072904	
	Number of ring blanks in sample group:		3	
	Total weight of ring blanks in sample group (g):	17	71.5	
	Total volume of leach solution (ml):	36.3	41.0	
-		- Marian		
	Radiochemical laboratory analysis number:	3885-004	3885-009	
	Measured concentration of impurity in solution (µg/ml):	3.93E-01	2.07E-02	
U	Weight of impurity in sample group (µg):	14.27	0.85	U
	Average concentration of impurity in ring blanks (ppmw):	0.0832	0.0049	0.0881
	Measured concentration of impurity in solution (µg/ml):	9.33E+00	6.84E-01	
Fe	Weight of impurity in sample group (µg):	338.68	28.04	Fe
	Average concentration of impurity in ring blanks (ppmw):	1.9744	0.1635	2.1379
	Measured concentration of impurity in solution (µg/ml):	1.96E-01	1.25E-02	
Cr	Weight of impurity in sample group (µg):	7.11	0.51	Cr
	Average concentration of impurity in ring blanks (ppmw):	0.0415	0.0030	0.0445
	Measured concentration of impurity in solution (µg/ml):	< 1.91E-03	< 1.91E-03	
Mn	Weight of impurity in sample group (µg):	< 0.07	< 0.08	Mn
	Average concentration of impurity in ring blanks (ppmw):	< 0.0004	< 0.0005	< 0.0009
	Measured concentration of impurity in solution (µg/ml):	9.24E-03	< 1.62E-03	
Co	Weight of impurity in sample group (µg):	0.34	< 0.07	Co
	Average concentration of impurity in ring blanks (ppmw):	0.0020	< 0.0004	< 0.0023
	Measured concentration of impurity in solution (µg/ml):	1.19E-01	< 8.00E-03	
Ni	Weight of impurity in sample group (µg):	4.32	< 0.33	Ni
	Average concentration of impurity in ring blanks (ppmw):	0.0252	< 0.0019	< 0.0271
	Measured concentration of impurity in solution (µg/ml):	1.91E+01	1.89E+00	0-
Ca	Weight of impurity in sample group (µg):	693.33	77.49	Ca
	Average concentration of impurity in ring blanks (ppmw):	4.0419	0.4517	4.4936
	Measured concentration of impurity in solution (µg/ml):	5.42E+01	5.86E+00	
AI	Weight of impurity in sample group (µg):	1967.46	240.26	Al
	Average concentration of impurity in ring blanks (ppmw):	11.4697	1.4006	12.8703
	Measured concentration of impurity in solution (µg/ml):	5.40E+00	5.54E-01	-
Ti	Weight of impurity in sample group (µg):	196.02	22.71	Ti
	Average concentration of impurity in ring blanks (ppmw):	1.1427	0.1324	1.2752
	Measured concentration of impurity in solution (µg/ml):	9.39E+00	3.72E-01	
v [Weight of impurity in sample group (µg):	340.86	15.25	V
	Average concentration of impurity in ring blanks (ppmw):	1.9871	0.0889	2.0760

Comments

Weight of ash after nitric acid leaching was 0.160 g.

Data checked by FCM against the official results of analyses for RMAL3885 on 8/16/2011.

Frederick C. Montgo mery

9-1-2011

Procedure:	AGR-CHAR-DAM-44 Rev. 0
Operator:	Fred Montgomery
Ring blank lot ID:	ARB-B1
Ring blank lot description:	Matrix Blend I with Hexion Durite SD-1708 resin
Ring blank ID numbers:	Blank
DRF filename:	\\mc-agr\AGR\LeachBurnLeach\ARB-B1_DRF44R0.xlsx

		First Leach	Second Leach	Total
-	Leach solution ID:	B11072605	B11072905	
	Number of ring blanks in sample group:		1	
	Total weight of ring blanks in sample group (g):			
	Total volume of leach solution (ml):	41.5	39.0	
	THE PARTY OF THE P			
	Radiochemical laboratory analysis number:	3885-005	3885-010	
	Measured concentration of impurity in solution (µg/ml):	2.33E-03	3.23E-03	U
U	Weight of impurity in sample group (µg):	0.10	0.13	U
	Total Weight of impurity detected (µg):			
	Measured concentration of impurity in solution (µg/ml):	9.14E-02	< 4.12E-02	
Fe	Weight of impurity in sample group (µg):	3.79	< 1.61	Fe
	Total Weight of impurity detected (µg):			
	Measured concentration of impurity in solution (µg/ml):	< 2.00E-03	< 2.00E-03	-
Cr	Weight of impurity in sample group (µg):	< 0.08	< 0.08	Cr
	Total Weight of impurity detected (µg):			
	Measured concentration of impurity in solution (µg/ml):	1.94E-03	< 1.91E-03	
Mn -	Weight of impurity in sample group (µg):	0.08	< 0.07	Mn
-	Total Weight of impurity detected (µg):			
	Measured concentration of impurity in solution (µg/ml):	< 1.62E-03	< 1.62E-03	
Co	Weight of impurity in sample group (µg):	< 0.07	< 0.06	Co
-	Total Weight of impurity detected (µg):			
	Measured concentration of impurity in solution (µg/ml):	< 8.00E-03	< 8.00E-03	100
Ni -	Weight of impurity in sample group (µg):	< 0.33	< 0.31	Ni
	Total Weight of impurity detected (µg):	0.00	0.01	
	Measured concentration of impurity in solution (µg/ml):	6.65E-01	2.40E-01	
Ca	Weight of impurity in sample group (µg):	27.60	9.36	Ca
	Total Weight of impurity detected (µg):	27.00	3.50	
	Measured concentration of impurity in solution (µg/ml):	6.96E-02	1.69E-02	
AI	Weight of impurity in sample group (µg):	2.89	0.66	Al
~' -	Total Weight of impurity detected (µg):	2.03	0.00	
_	Measured concentration of impurity in solution (µg/ml):	< 8.00E-03	< 8.00E-03	- 10
Ti -	Weight of impurity in sample group (µg):	< 0.33	< 0.31	Ti
" -	Total Weight of impurity detected (µg):	(0.55	V 0.51	
_		< 2.00E.02	4 2 00E 02	
v -	Measured concentration of impurity in solution (µg/ml):	< 2.00E-03 < 0.08	< 2.00E-03 < 0.08	V
V	Weight of impurity in sample group (µg): Total Weight of impurity detected (µg):	< 0.00	< 0.08	

Comments

Data checked by FCM against the official results of analyses for RMAL3885 on 8/16/2011.

Frederick C. Mortgomery

9-1-2011

Data Report Form DRF-44 Supplemental: Measurement of Impurities in Matrix Ring Blank Ash

Procedure:	AGR-CHAR-DAM-44 Rev. 0
Operator:	Fred Montgomery
Ring blank lot ID:	ARB-B1
Ring blank lot description:	Matrix Blend I with Hexion Durite SD-1708 resin
Ring blank ID numbers:	Z026, Z015, Z014
DRF filename:	\\mc-agr\AGR\LeachBurnLeach\ARB-B1_DRF44R0.xlsx

		From Ash Analysis	From Acid Leach	Revised Total
	Ash ID:	ASH 11080101	100 CO 10	
	Number of ring blanks in sample group:	3		
	Total weight of ring blanks in sample group (g):	171.0		
	Total weight of residual ash (g):	0.171		
	Radiochemical laboratory analysis number:	3886-001		
	Measured concentration of impurity in ash (µg/q):	3.29E+01		
U	Weight of impurity detected (µg):	5.61	12.74	U
-	Average concentration of impurity in ring blanks (ppmw):	0.0328	0.0745	0.1074
	Measured concentration of impurity in ash (µg/g):	5.37E+02		
Fe T	Weight of impurity detected (µg):	91.61	416.15	Fe
	Average concentration of impurity in ring blanks (ppmw):	0.5357	2.4337	2.9694
	Measured concentration of impurity in ash (µg/g):	1.27E+00		
Cr T	Weight of impurity detected (µg):	0.22	10.60	Cr
	Average concentration of impurity in ring blanks (ppmw):	0.0013	0.0620	0.0632
	Measured concentration of impurity in ash (µg/g):	< 2.79E-01		
Mn	Weight of impurity detected (µg):	< 0.05	< 0.13	Mn
	Average concentration of impurity in ring blanks (ppmw):	< 0.0003	< 0.0008	< 0.0010
	Measured concentration of impurity in ash (µg/g):	1.31E+00		
Co	Weight of impurity detected (μg):	0.22	< 0.48	Co
	Average concentration of impurity in ring blanks (ppmw):	0.0013	< 0.0028	< 0.0041
	Measured concentration of impurity in ash (μg/g):	6.05E+00		
Ni	Weight of impurity detected (µg):	1.03	< 4.74	Ni
	Average concentration of impurity in ring blanks (ppmw):	0.0060	< 0.0277	< 0.0337
	Measured concentration of impurity in ash (μg/g):	2.84E+03		
Ca [Weight of impurity detected (μg):	484.50	741.27	Ca
	Average concentration of impurity in ring blanks (ppmw):	2.8334	4.3350	7.1683
	Measured concentration of impurity in ash (µg/g):	1.18E+04		4.
AI	Weight of impurity detected (µg):	2013.08	2223.28	Al
	Average concentration of impurity in ring blanks (ppmw):	11.7725	13.0018	24.7743
	Measured concentration of impurity in ash (μg/g):	5.90E+02		-
Ti [Weight of impurity detected (µg):	100.65	230.55	Ti
	Average concentration of impurity in ring blanks (ppmw):	0.5886	1.3482	1.9369
	Measured concentration of impurity in ash (μg/g):	2.80E+01		V
V	Weight of impurity detected (μg):	4.78	363.27	V
	Average concentration of impurity in ring blanks (ppmw):	0.0279	2.1244	2.1523

Comments

Additional ring blank impurities greater than about 1 ppmw detected in ash: 105 ppmw Si, 1.7 ppmw Ba, 1.6 ppmw Mg, 1.0 ppmw Zr.

Of the 0.1706 g of ash residue, the amount that did not dissolve during the microwave digestion was 0.1276g.

Data checked by FCM against the official results of analyses for RMAL3886 on 8/25/2011.

Frederick C. Mentzomery

9-1-2011

Data Report Form DRF-44 Supplemental: Measurement of Impurities in Matrix Ring Blank Ash

Procedure:	AGR-CHAR-DAM-44 Rev. 0
Operator:	Fred Montgomery
Ring blank lot ID:	ARB-B1
Ring blank lot description:	Matrix Blend I with Hexion Durite SD-1708 resin
Ring blank ID numbers:	Z003, Z041, Z025
DRF filename:	\\mc-agr\AGR\LeachBurnLeach\ARB-B1_DRF44R0.xlsx

	A -	From Ash Analysis	From Acid Leach	Revised Total
	Ash ID:	ASH 11080102		
	Number of ring blanks in sample group:	3		
	Total weight of ring blanks in sample group (g):	170.9		
	Total weight of residual ash (g):	0.159		
	Radiochemical laboratory analysis number:	3886-002		
	Measured concentration of impurity in ash (µg/g):	2.42E+01		Ù
U	Weight of impurity detected (µg):	3.84	7.48	U
	Average concentration of impurity in ring blanks (ppmw):	0.0225	0.0438	0.0663
	Measured concentration of impurity in ash (μg/g):	6.57E+02	The same of the sa	Fe
Fe	Weight of impurity detected (µg):	104.33	415.24	re
	Average concentration of impurity in ring blanks (ppmw):	0.6104	2.4295	3.0399
	Measured concentration of impurity in ash (μg/g):	1.14E+00		0
Cr	Weight of impurity detected (µg):	0.18	8.16	Cr
	Average concentration of impurity in ring blanks (ppmw):	0.0011	0.0477	0.0488
	Measured concentration of impurity in ash (µg/g):	< 3.00E-01		
Mn	Weight of impurity detected (µg):	< 0.05	< 0.14	Mn
	Average concentration of impurity in ring blanks (ppmw):	< 0.0003	< 0.0008	< 0.0011
	Measured concentration of impurity in ash (μg/g):	1.45E+00		Co
Co	Weight of impurity detected (µg):	0.23	< 0.45	CO
	Average concentration of impurity in ring blanks (ppmw):	0.0013	< 0.0026	< 0.0040
	Measured concentration of impurity in ash (μg/g):	5.72E+00		641
Ni	Weight of impurity detected (µg):	0.91	4.85	Ni
	Average concentration of impurity in ring blanks (ppmw):	0.0053	0.0284	0.0337
	Measured concentration of impurity in ash (μg/g):	3.00E+03		0-
Ca	Weight of impurity detected (µg):	476.40	772.84	Ca
	Average concentration of impurity in ring blanks (ppmw):	2.7873	4.5217	7.3090
	Measured concentration of impurity in ash (µg/g):	1.17E+04		41
AI	Weight of impurity detected (µg):	1857.96	2358.16	Al
	Average concentration of impurity in ring blanks (ppmw):	10.8704	13.7969	24.6673
	Measured concentration of impurity in ash (µg/g):	6.26E+02		
Ti	Weight of impurity detected (µg):	99.41	213.40	Ti
	Average concentration of impurity in ring blanks (ppmw):	0.5816	1.2486	1.8302
	Measured concentration of impurity in ash (µg/g):	3.46E+01		
V	Weight of impurity detected (µg):	5.49	363.26	V
-	Average concentration of impurity in ring blanks (ppmw):	0.0321	2.1253	2.1575

Comments

Additional ring blank impurities greater than about 1 ppmw detected in ash: 99 ppmw Si, 1.7 ppmw Ba, 1.7 ppmw Mg, 1.0 ppmw Zr. Of the 0.1588 g of ash residue, the amount that did not dissolve during the microwave digestion was 0.1239g.

Data checked by FCM against the official results of analyses for RMAL3886 on 8/25/2011.

Frederick C. Montgomery

9-1-2011

Data Report Form DRF-44 Supplemental: Measurement of Impurities in Matrix Ring Blank Ash

Procedure:	AGR-CHAR-DAM-44 Rev. 0
Operator:	Fred Montgomery
Ring blank lot ID:	ARB-B1
Ring blank lot description:	Matrix Blend I with Hexion Durite SD-1708 resin
Ring blank ID numbers:	
DRF filename:	\\mc-agr\AGR\LeachBurnLeach\ARB-B1_DRF44R0.xlsx

		From Ash Analysis	From Acid Leach	Revised Total	
	Ash ID:	ASH 11080103	13 3		
	Number of ring blanks in sample group:	3			
	Total weight of ring blanks in sample group (g):	171.5			
	Total weight of residual ash (g):	0.167			
	Radiochemical laboratory analysis number:	3886-003			
	Measured concentration of impurity in ash (µg/g):	2.97E+01			
U	Weight of impurity detected (µg):	4.97	330.07	U	
	Average concentration of impurity in ring blanks (ppmw):	0.0290	1.9252	1.9542	
	Measured concentration of impurity in ash (µg/g):	5.21E+02			
Fe	Weight of impurity detected (µg):	87.22	415.51	Fe	
	Average concentration of impurity in ring blanks (ppmw):	0.5087	2.4235	2.9322	
	Measured concentration of impurity in ash (µg/g):	8.30E-01	THE PARTY OF THE P		
Cr	Weight of impurity detected (µg):	0.14	6.92	Cr	
	Average concentration of impurity in ring blanks (ppmw):	0.0008	0.0404	0.0412	
	Measured concentration of impurity in ash (μg/g):	< 2.85E-01		140	
Mn	Weight of impurity detected (µg):	< 0.05	< 0.12	Mn	
	Average concentration of impurity in ring blanks (ppmw):	< 0.0003	< 0.0007	< 0.0010	
	Measured concentration of impurity in ash (µg/g):	1.21E+00		0-	
Co	Weight of impurity detected (μg):	0.20	< 0.43	Co	
	Average concentration of impurity in ring blanks (ppmw):	0.0012	< 0.0025	< 0.0037	
	Measured concentration of impurity in ash (μg/g):	4.71E+00		Ni	
Ni	Weight of impurity detected (µg):	0.79	< 4.43	NI	
	Average concentration of impurity in ring blanks (ppmw):	0.0046	< 0.0258	< 0.0304	
	Measured concentration of impurity in ash (μg/g):	2.89E+03		0-	
Ca	Weight of impurity detected (µg):	483.79	733.18	Ca	
	Average concentration of impurity in ring blanks (ppmw):	2.8217	4.2763	7.0980	
	Measured concentration of impurity in ash (µg/g):	1.12E+04		AL	
AI [Weight of impurity detected (µg):	1874.88	2249.32	Al	
	Average concentration of impurity in ring blanks (ppmw):	10.9354	13.1193	24.0546	
	Measured concentration of impurity in ash (μg/g):	5.64E+02	and the same	71	
Ti [Weight of impurity detected (µg):	94.41	222.13	Ti	
	Average concentration of impurity in ring blanks (ppmw):	0.5507	1.2956	1.8463	
	Measured concentration of impurity in ash (µg/g):	3.21E+01		V	
v [Weight of impurity detected (µg):	5.37	356.56	V	
	Average concentration of impurity in ring blanks (ppmw):	0.0313	2.0796	2.1110	

Comments

Additional ring blank impurities greater than about 1 ppmw detected in ash: 100 ppmw Si, 1.8 ppmw Ba, 1.7 ppmw Mg, 0.6 ppmw Zr. Of the 0.1674 g of ash residue, the amount that did not dissolve during the microwave digestion was 0.1246g.

Data checked by FCM against the official results of analyses for RMAL3886 on 8/25/2011.

Frederick C. Montgomery

9-1-2011

Data Report Form DRF-44 Supplemental: Measurement of Impurities in Matrix Ring Blank Ash

Procedure:	AGR-CHAR-DAM-44 Rev. 0
Operator:	Fred Montgomery
Ring blank lot ID:	ARB-B1
Ring blank lot description:	Matrix Blend I with Hexion Durite SD-1708 resin
Ring blank ID numbers:	Z019, Z036, Z044
DRF filename:	\\mc-agr\AGR\LeachBurnLeach\ARB-B1_DRF44R0.xlsx

		From Ash Analysis	From Acid Leach	Revised Total
	Ash ID:	ASH 11080104	100	
	Number of ring blanks in sample group:	3		
	Total weight of ring blanks in sample group (g):	171.5		
	Total weight of residual ash (g):	0.160		
	Radiochemical laboratory analysis number:	3886-004		
	Measured concentration of impurity in ash (µg/g):	4.17E+01		U
U	Weight of impurity detected (µg):	6.65	15.11	
	Average concentration of impurity in ring blanks (ppmw):	0.0388	0.0881	0.1269
	Measured concentration of impurity in ash (μg/g):	5.57E+02		Fe
Fe	Weight of impurity detected (µg):	88.84	366.72	
	Average concentration of impurity in ring blanks (ppmw):	0.5179	2.1379	2.6558
	Measured concentration of impurity in ash (μg/g):	8.38E-01		Cr
Cr	Weight of impurity detected (µg):	0.13	7.63	Cr
	Average concentration of impurity in ring blanks (ppmw):	0.0008	0.0445	0.0452
	Measured concentration of impurity in ash (µg/g):	< 2.99E-01		Ma
Mn	Weight of impurity detected (µg):	< 0.05	< 0.15	Mn
	Average concentration of impurity in ring blanks (ppmw):	< 0.0003	< 0.0009	< 0.0011
	Measured concentration of impurity in ash (μg/g):	1.30E+00		Co
Co	Weight of impurity detected (μg):	0.21	< 0.40	Co
	Average concentration of impurity in ring blanks (ppmw):	0.0012	< 0.0023	< 0.0036
	Measured concentration of impurity in ash (μg/g):	6.68E+00		Ni
Ni	Weight of impurity detected (µg):	1.07	< 4.65	NI
	Average concentration of impurity in ring blanks (ppmw):	0.0062	< 0.0271	< 0.0333
	Measured concentration of impurity in ash (μg/g):	3.33E+03		C-
Ca	Weight of impurity detected (µg):	531.14	770.82	Ca
	Average concentration of impurity in ring blanks (ppmw):	3.096	4.494	7.590
	Measured concentration of impurity in ash (µg/g):	1.30E+04		4.
AI	Weight of impurity detected (µg):	2073.50	2207.72	Al
	Average concentration of impurity in ring blanks (ppmw):	12.0879	12.8703	24.9582
	Measured concentration of impurity in ash (µg/g):	5.45E+02		
Ti	Weight of impurity detected (µg):	86.93	218.73	Ti
	Average concentration of impurity in ring blanks (ppmw):	0.5068	1.2752	1.7819
	Measured concentration of impurity in ash (µg/g):	2.95E+01	MATERIAL PROPERTY.	
V	Weight of impurity detected (µg):	4.71	356.11	V
	Average concentration of impurity in ring blanks (ppmw):	0.0274	2.0760	2.1034

Comments

Additional ring blank impurities greater than about 1 ppmw detected in ash: 100 ppmw Si, 1.9 ppmw Ba, 1.7 ppmw Mg, 0.5 ppmw Zr.

Of the 0.1595 g of ash residue, the amount that did not dissolve during the microwave digestion was 0.1160g.

Data checked by FCM against the official results of analyses for RMAL3886 on 8/25/2011.

Fred C. Montgomery

9-1-2011

Date

Data Report Form DRF-44 Supplemental: Measurement of Impurities in Matrix Ring Blank Ash

Procedure:	AGR-CHAR-DAM-44 Rev. 0
Operator:	Fred Montgomery
Ring blank lot ID:	ARB-B1
Ring blank lot description:	Matrix Blend I with Hexion Durite SD-1708 resin
Ring blank ID numbers:	Blank
DRF filename:	\\mc-agr\AGR\LeachBurnLeach\ARB-B1_DRF44R0.xlsx

		From Ash Analysis	From Acid Leach	Revised Total			
	Ash ID:	ASH 11080105					
	Number of ring blanks in sample group:	1					
	Total weight of ring blanks in sample group (g):						
	Total weight of residual ash (g):						
	Radiochemical laboratory analysis number:	3886-005					
	Measured concentration of impurity in ash (µg/g):			U			
U	Weight of impurity detected (µg):	< 5.00E-03	0.22	U			
	Total Weight of impurity detected (µg):						
	Measured concentration of impurity in ash (µg/g):			-			
Fe	Weight of impurity detected (µg):	< 1.03E+00	< 5.40	Fe			
	Total Weight of impurity detected (µg):						
	Measured concentration of impurity in ash (µg/g):						
Cr	Weight of impurity detected (µg):	< 5.00E-02	< 0.16	Cr			
	Total Weight of impurity detected (µg):						
Mn	Measured concentration of impurity in ash (µg/g):						
	Weight of impurity detected (µg):	< 4.77E-02	< 0.16	Mn			
	Total Weight of impurity detected (µg):						
	Measured concentration of impurity in ash (µg/g):						
Co	Weight of impurity detected (µg):	< 4.06E-02	< 0.13	Co			
11	Total Weight of impurity detected (µg):						
	Measured concentration of impurity in ash (µg/g):		Part of the last o				
Ni	Weight of impurity detected (µg):	< 2.00E-01	< 0.64	Ni			
	Total Weight of impurity detected (µg):						
	Measured concentration of impurity in ash (µg/g):						
Ca	Weight of impurity detected (µg):	2.50E+00	36.96	Ca			
	Total Weight of impurity detected (µg):						
	Measured concentration of impurity in ash (µg/g):						
Al	Weight of impurity detected (µg):	1.28E+00	3.55	Al			
	Total Weight of impurity detected (µg):						
	Measured concentration of impurity in ash (µg/g):		The same of the same of	-			
Ti	Weight of impurity detected (µg):	< 2.00E-01	< 0.64	Ti			
	Total Weight of impurity detected (µg):						
	Measured concentration of impurity in ash (μg/g):						
V	Weight of impurity detected (µg):	< 5.00E-02	< 0.16	V			
	Total Weight of impurity detected (µg):						

Comments

Data checked by FCM against the official results of analyses for RMAL3886 on 8/25/2011.

Frederick C. Montgomery 9-1-201)
Operator Date

Appendix A: Non-Conformance Report for Matrix Density

The following page is a copy of the non-conformance report NCR-X-AGR-11-01. This reports that 19 ring blanks from the ARB-B1 ring blank set had an average density slightly above the specified limit of 1.80 g/cm³. These ring blanks were used for destructive impurity analysis or retained at ORNL and the 30 shipped to INL were within the specified density limits.

ORNL NONCONFORMANCE REPORT (NCR)

1.a. ATS TRACKING NUMBER:	2. DIVISION / ORGAN	IZATION	3. SUBCONTRAC	CT #	4. PROJECT TITLE / JOB #
1.b. NCR- X-AGR-11-01	Fuel Cycle and Isotopes IEWO 59613				AGR Program
5. HOLD/REJECT TAG # / SEGREGATION AREA				7. IDENTIFIER	8
N/A - tracking by sample ID	August 9, 2011 Jo			John Hunn	
	Fabricated Pro	cedural	Vendor Sup	oplied Inc	dustrial Safety Other
9. RESPONSIBLE PERSON John Hunn	ARB-B1 Ring Bla		AME	4508	
12. FACILITY SYSTEM	13. SUPPLIER	iiilo			REMENT SOURCE
N/A	N/A				Specification INL/SPC-1214, R
15. SPECIFIED REQUIREM	IENT	T		16. NONCON	FORMANCE
17. EVALUATION Find blanks were fabricated according to approved 100% of the ring blanks within the specified range, final length of ring blank. The insufficient nature of capable of more reliable control of compact length because the required compacting pressure was befor this work. Recommended disposition is to use the nonconform machining into matrix rings that may be used in the blanks to ship the full complement of 30 requested.	ON, REMEDIAL AC and tested procedure. The main contributing f this hydraulic press had has been acquired for pyond its limit. Acquisitioning ring blanks for des AGR-3/4 irradiation tested	ARB-B1 ARB-B1 ARB-B1 ARB-B1 ARB-B1 TION, AN Target der actor was a been prevenduction of electric tructive impact. A total of	densities rangin -Z003, ARB-B1-; -Z015, ARB-B1-; -Z027, ARB-B1-; -Z041, ARB-B1-; -Z041	g from 1.80 to 1 Z006, ARB-B1-Z Z016, ARB-B1-Z Z030, ARB-B1-Z Z030, ARB-B1-Z Z044, ARB-B1-Z Z144, ARB-B1-Z Z144	ATION To the upper specified limit to produce ic press offered insufficient control on ert and an electric servomotor press pressure load cells was not warranted informing ring blanks to INL for so there are sufficient conforming ring so there are sufficient conforming ring blanks to the top the servomotor press press could not be used for ring blanks or so there are sufficient conforming ring blanks to the servomotor press press could not be used for ring blanks or so there are sufficient conforming ring blanks to the servomotor press the servomotor press pressure load cells was not warranted informing ring blanks to the servomotor pressure load cells was not warranted informing ring blanks to the servomotor pressure load cells was not warranted informing ring blanks to the servomotor pressure load cells was not warranted informing ring blanks to the servomotor pressure load cells was not warranted informing ring blanks to the servomotor pressure load cells was not warranted informing ring blanks to the servomotor pressure load cells was not warranted informing ring blanks to the servomotor pressure load cells was not warranted informing ring blanks to the servomotor pressure load cells was not warranted informing ring blanks to the servomotor pressure load cells was not warranted informing ring blanks to the servomotor pressure load cells was not warranted informing ring blanks to the servomotor pressure load cells was not warranted informing ring blanks to the servomotor pressure load cells was not warranted informing ring blanks to the servomotor pressure load cells was not warranted informing ring blanks to the servomotor pressure load cells was not warranted informing ring blanks to the servomotor pressure load cells was not warranted informing ring blanks to the servomotor pressure load cells was not warranted informing ring the servomotor pressure load cells was not warranted informing ring the servomotor pressure load cells was not warranted informing ring the servomotor pressure load cells was not wa
18. SUPPLIER PROPOSED DISPOSITION	The state of the state of				
SIGNATURE/DATE John Hunn, ORNL AG	R Project Manager				
	19. NONCONFO	RMANCE	DISPOSITION		
Accept/Use-As-Is Approved for Alterna				work to Spec.	Return to Vendor Scrap
John Hunn July Hum 8-10-11	John Hunn David Petti	ERSON, DAY July Day	From 8-10-	Mark V	VAC/QM, DATE.
23. DESIGN DRAWINGS, SPECS, OR PROCEDURE CHA	ANGES? Yes If yes,	list below	: No	24. USQ1	DREQUIRED? Yes No
DESIGN AUTHORITY OR SYSTEM ENG., DATE N/A				SAFETY	ANALYST, DATE N/A
25. PAAA OFFICE SCREENING? Yes No	26. ACTUA		TIMATED COST		27. PROBABLE CAUSE CODE
SIGNATURE,DATE	this disposit	ion 4C			
	REMEDIAL A	CTION CO	MPLETION		
28. RESPONSIBLE PERSON OR VERIFIER	29	. TARGET	DATE	30	0. DATE CLOSED
N/A No further remedial action planned	N/	A		N	/A

Appendix B: Non-Conformance Report for Al Content

The following page is a copy of the non-conformance report NCR-X-AGR-11-02. This reports that the average Al impurity content (24.6 ppmw) for the ARB-B1 ring blank set was above the specified limit of ≤ 20 ppmw. The disposition for this non-conformance was to accept for use.

ORNL NONCONFORMANCE REPORT (NCR)

N/A No further remedial action planned		N/A		1	N/A		
		29. TARGET	DATE		30. DATE CLOSED		
28. RESPONSIBLE PERSON OR VERIFIER	REMEDIAL	ACTION CO		-	10 Difference		
SIGNATURE, DATE	THE RESERVE THE PARTY OF THE PA			una dispos	40		
			sociated with	this dienos	and the second	C. LODE CODE	
25. PAAA OFFICE SCREENING? Yes No	26. 🗸 ACT	THAT The	TIMATED COST	SAFET	Y ANALYST, DATE N/2 27. PROBABLE		
DESIGN AUTHORITY OR SYSTEM ENG., DATE N/A				2/2-		Δ.	
23. DESIGN DRAWINGS, SPECS, OR PROCEDURE CHA	NGES? Yes If y	es, list below	: No	24. US	D REQUIRED? Yes	No.	
	David Petti	Salt	At 9-12	-1((9/9/11	
John Hunn Whn 7km 9-9-11	John Hunn	Julm N	um 9-9-11	Mark	Vance 7/.	W,	
20. SUBJECT MATTER EXPERT, DATE					S/QAC/QM, DATE	-	
Accept/Use-As-Is Approved for Alternate	Use Repair	to Useable C	ondition Re	work to Spec	. Return to Vend	or Scrap	
	19. NONCON	FORMANCE	DISPOSITION				
SIGNATURE/DATE John Hunn, ORNL AGF	Project Manag	ger /	My Him	. 1-7-1			
18. SUPPLIER PROPOSED DISPOSITION			1 11	9 0	1		
ARB-B1 ring blanks will affect the AGR-3/4 irradiation	n experiment. All o	ther specified	impurities were	well below the	specified limits.	- Carparation	
The specification for a maximum AI content of ≤ 20 p	opmw Al at 95% co	nfidence is a	conservative valu	e. It is not exp	ected that the observe	ed Al content in the	
ARB-B1 ring blanks related to the higher density and to produce ring blanks that would pass the specifical	different resin. Th	e starting Al in	npurity content o	f the ARB-B1	graphite/resin matrix b	lend was too high	
the RDKRS ring blanks was 1.33 ppmw with a stand materials. Aluminum content was apparently unredu-	ced by heat treatme	ent of the ARI	3-B1 ring blanks.	This may hav	e been due to a lower	permeability in the	
Ring blanks were heat treated at 1800°C to reduce t	he impurity content	. Mean Al cor	tent determined	from nitric aci	leaching and microw	ave digestion of	
did not completely digest the ARB-B1 residual ash (t							
there was about 2.5 times more residual ash after ni higher Si content, because SiO2 does not dissolve in	tric acid leaching o n nitric acid. Microv	the ARB-B1 vave digestion	ring blanks. This consumed most	increase in as t of the residua	th residue is thought to all ash from the RDKRS	be due to the ring blanks, but	
blanks was also higher in Al and Fe. Ash residue wa	is observed after ho	ot nitric acid le	aching of both th	ne RDKRS and	ARB-B1 ring blank sa	amples. However,	
several characteristics including low impurities and le in the ARB-B1 ring blanks was a similar low impurity	ow residual ash. As	bury Graphite	Mills RD 3482 r	natural graphit	e chosen for compact s	scale-up and used	
17. EVALUATIO Asbury Graphite Mills RD 13371 natural graphite use						sen based on	
	N DEMERSOR	· OTHER :	ID MEGUNES		L TYON		
		predicte ≤20 ppn		ne AHB-B1 rir	g blank set is above th	ne specified limit of	
		ash resi	due. Based on th	ne analysis of	hese 12 ring blanks, th	he 95% confidence	
					an AI content of 24.6 p		
		residue,	and an additiona	al mean Al cor	itent of 11.4 ppmw was	s detected.	
		13.2 pp	nw. However, af	ter the nitric a	old leaching, significant le to digest about 25 v	t ash residue	
					anks were heated in a ing analysis yielded a		
15. SPECIFIED REQUIREM! Ring blank aluminum content: ≤ 20 ppmw Al at 95%			m content was d	etermined from	NFORMANCE in a sample of 12 ring b		
		1		N. Townson			
N/A	N/A			1000	4 Spec INL/SPC-1	1214, Rev. 1	
John Hunn 12. FACILITY SYSTEM	ARB-B1 Ring I	ыапкѕ		4508	IREMENT SOURCE		
9. RESPONSIBLE PERSON	10. EQUIPMENT/		AME	11. BUILI	ING		
8. Type: Construction In-House		rocedural	Vendor Sup		ndustrial Safety	Other	
N/A	August 25, 2011			ried Wont	Fred Montgomery		
5. HOLD/REJECT TAG # / SEGREGATION AREA		Control of the Contro			IDENTIFIER		
I.b. NCR- X-AGR-11-02					AGR Program		
1.a. ATS TRACKING NUMBER:	2. DIVISION / ORG		3. SUBCONTRAC		4. PROJECT TITLE /	JOB #	

Appendix C: Non-Conformance Report for U Contamination

The following page is a copy of the non-conformance report NCR-X-AGR-11-03. This documents that one of the burn-leach samples from the ARB-B1 ring blank set analyzed for U contamination had an abnormally high value (1.95 ppmw), which was above the specified limit of ≤ 0.5 ppmw. The disposition for this non-conformance was to accept for use. Following the non-conformance report is a discussion of additional analysis performed in response to the observed anomaly.

ORNL NONCONFORMANCE REPORT (NCR)

1.a. ATS TRACKING NUMBER:	2. DIVISION / ORGAN	IZATION	3. SUBCONTRA	CT #	4. P	ROJECT TITLE / JOB #	
1.b. NCR - X-AGR-11-03	Fuel Cycle and Is	sotopes	IEWO 59613		R Program		
5. HOLD/REJECT TAG # / SEGREGATION AREA	6. IDENTIFICATION	a year and a second			7. IDENTIFIER		
N/A	August 17, 2011 Fre			Fred Mon	Fred Montgomery		
8. Type: Construction In-House		cedural	Vendor Sup			ial Safety Other	
9. RESPONSIBLE PERSON	10. EQUIPMENT / PA		IAME	11. BUIL	DING		
John Hunn	ARB-B1 Ring Bla	anks		4508			
12. FACILITY SYSTEM	13. SUPPLIER			100000		NT SOURCE	
N/A	N/A			AGR-	3/4 Spe	ec INL/SPC-1214, Rev. 1	
15. SPECIFIED REQUIREM Ring blank heavy metal contamination: ≤ 0.5 ppm		One sa compar resulted	mple groups of 3 mple group show ed to an average	ed an anoma of 0.10 ppm ence predicte	each wer alously h w for the ed U con	re analyzed for U contamination. igh U content of 1.95 ppmw o other three sample groups. This tamination level for the ARB-B1	
See attached discussion of this NCR. Additional at one of the sample groups and to evaluate the likel background contamination by low enriched uraniu LEU contamination was higher than expected, but contamination observed in the one offending samp sources, such as contamination of the graphite/res. If the one sample group with the abnormally high would be 0.10 ppmw with a standard deviation of the specified limit of 0.5 ppmw. It could not be concludabove the specified limit, but it is statistically favor ARB-B1 set of 50 would exhibit a uranium content. The impact of a ring blank having a higher uranium determination of fission product diffusion from the	ihood that a ring blank to m (LEU) was identified, still below the specified ble group (also determinis blend prior to compauranium content is ignor 0.03 ppmw. This yields led from the additional able, based on the avail significantly above the months of the specific prior of the significantly above the months of the significantly above the months of the significantly above the months of the specific prior of the significantly above the months of the significantly above the months of the significantly above the months of the significantly above the significantly above the months of the significantly above the significant significantly above the significant significantly above the significant s	o determinused for the which prolifimit for uned to be Licting or conted, than the a 95% conted analysis white the content of	e the source of the AGR-3/4 irradia bably came from anium. It could n EU) came from the from	ne unusually tion experime the heat-treat of be determine heat-treating analysis. In content dece test value ing blanks mo more than tranium in the	high ura ent woul tment of ined if th ment furn etermine of 0.15 ay also a few of	nium contamination observed in d exhibit a similar defect. A the ring blanks. This background e abnormally high uranium nace or from other possible d from the other 3 sample groups ppmw, which is below the have a uranium impurity content the ring blanks in the whole ing may confuse or obscure the	
(RDKRS), but the difference in graphite/resin blen to a program decision to use the ARB-B1 ring blar	d and matrix density for						
18. SUPPLIER PROPOSED DISPOSITION			In The	9,	2 11		
SIGNATURE/DATE John Hunn, ORNL AG	R Project Manage	r //	elin Mi	n 1-1	3-11		
	19. NONCONFO		DISPOSITION				
Accept/Use-As-Is Approved for Alterna				work to Spe	ec. F	Return to Vendor Scrap	
20. SUBJECT MATTER EXPERT, DATE	21. RESPONSIBLE P	ERSON, DA	TE	22. (QAS/QAC	/QM, DATE	
John Hunn John Alm 9-13-1	David Petti	by Min	201 9-13-11 201 9-13	-// Mari	k Vano	e M. 4/13/11	
23. DESIGN DRAWINGS, SPECS, OR PROCEDURE CH	IANGES? Yes If yes	, list belov	v: No	24. U	SQD REC	QUIRED? Yes No	
DESIGN AUTHORITY OR SYSTEM ENG., DATE N//	A			SAFI	ETY ANA	Lyst, date N/A	
25. PAAA OFFICE SCREENING? Yes No	26. ACTU	AL TE	STIMATED COST		- 1-111	27. PROBABLE CAUSE CODE	
SIGNATURE,DATE					2A		
O.O. ALI OREJUSTE	REMEDIAL A		Anna mail and a second				
28. RESPONSIBLE PERSON OR VERIFIER		9. TARGET			30 DA	TE CLOSED	
			wat is		4:30	TE CEOSED	
N/A No further remedial action planned	N	/A			N/A		

Discussion of NCR-AGR-11-03

The product inspection plan for AGR-3/4 matrix ring blanks, AGR-CHAR-PIP-20R1, specified burn-leach analysis of four samples of 3 ring blanks each, for a total sampling of 12 ring blanks analyzed out of the 50 produced for the ARB-B1 ring blank set. Burn-leach analysis was performed according to data acquisition method AGR-CHAR-DAM-44R0. Ring blanks were burned in air to reduce them to oxide ash. The ash was analyzed for selected metal contamination by leaching with boiling nitric acid for 24 hours, followed by a second 24 hour boiling nitric acid leach. After the standard burn-leach analysis, a significant quantity of ash residue remained. This ash residue was further analyzed by microwave-enhanced acid digestion and the results added to the results from the standard nitric acid leach. Table 10 shows a summary of the results for uranium.

Table 10. Results of uranium impurity analysis for ARB-B1 ring blanks

Ring Blank IDs	First	Leach	Second Leach		Microwave Digestion		Total	
	μg	ppmw	μg	ppmw	μg	ppmw	μg	ppmw
Z026,Z015,Z014	12.12	0.071	0.62	0.004	5.61	0.033	18.35	0.107
Z003,Z041,Z025	7.08	0.041	0.40	0.002	3.84	0.023	11.32	0.066
Z035,Z027,Z040	319.80	1.865	10.27	0.060	4.97	0.029	335.04	1.954
Z019,Z036,Z044	14.27	0.083	0.85	0.005	6.65	0.039	21.76	0.127

The third set of ring blanks (ARB-B1-Z035, -Z027, - Z040) showed an unusually high uranium content, 20 times higher than the average of the other 3 sets. The leach solutions for this set were re-analyzed and this result was confirmed. The second leach in the burn-leach analysis for this set was also abnormally high, which further confirms that there was a real U impurity in the third analyzed set. Note that it can not be determined whether the unusually high U content was isolated in a single ring blank or distributed between the 3 ring blanks in the sample. Analysis of the U-235 ratio indicated that the source of the impurity was 19.7% enriched material, which should rule out the natural graphite as the source of the impurity and suggests contamination from the 19.7% enriched AGR-3/4 fuel fabricated prior to the ring blank fabrication. Three possible sources of the observed U contamination were considered: 1) perhaps a fuel particle got picked up and mixed in with the ring blank matrix blend during cold slugging and regranulation prior to pressing; 2) perhaps contamination was transferred to the ring blanks during heat-treatment; 3) perhaps a particle got into the burn-leach vessel during analysis.

1) Consideration of the possibility that a fuel particle got picked up and mixed in with the ring blank matrix blend during cold slugging and re-granulation prior to pressing.

The cold slugging and re-granulation process described in Section 2 was done in the same hood used for AGR-3/4 overcoating. The amount of uranium in the sample was equivalent to what is contained in 1.4 AGR-3/4 kernels. This suggests the possibility that one ring blank was contaminated with one or two fuel particles. However, it is unusual for burn-leach detection of exposed fuel kernels to yield values which vary more than 10% from a whole number of particles.

If discreet particle contamination was the source of the observed uranium contamination then it may have been an isolated event. If other blanks were contaminated in this way, the fuel particles should be visible by imaging the ring blanks with x-ray.

X-ray imaging was performed on the 8 ring blanks retained at ORNL and the 30 ring blanks shipped to INL. Three ring blanks were identified to contain fragments of material with higher density then the graphite matrix. Figure 6 shows ARB-B1-Z034. Note that the edges of the ring blanks are not visible in this image, because the x-ray imaging conditions were chosen to provide maximum contrast for the dense fragment (marked by an arrow). The dark lines perpendicular to the axis of the cylinder are low density planes or fissures in the matrix material. These planes are cupped toward the bottom of the cylinder. This is probably related to the way the ring blanks form in the die. Pressure is applied from the top and material is pushed to the bottom of the die with some drag along the walls.

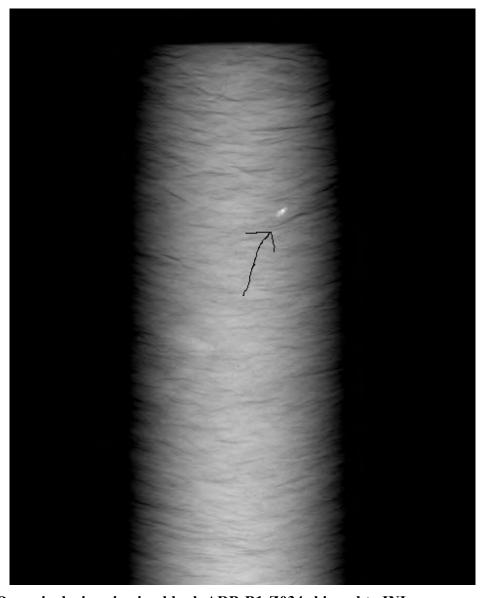


Figure 6. Dense inclusions in ring blank ARB-B1-Z034 shipped to INL.

Figure 7 and Figure 8 show ARB-B1-Z006 and ARB-B1-Z050, where the ring blanks in the second image were rotated 45° from their initial position. The spots in the image associated with high density fragments are marked by an arrow. Some bright spots may appear on some images due to dust on the negative scanner or some other anomaly. The ring blanks were imaged several times so that these artifacts could be eliminated. A high density fragment can be seen near the crack at the bottom of ARB-B1-Z006. This bright spot in the x-ray image moved laterally when the ring blank was rotated. The fragment in ARB-B1-Z050 seemed to stay in the same position on the x-ray image when rotated by 45 degrees. However, close examination revealed that the orientation of the fragment changed by 180° after rotation, indicating that the fragment moved from above the midplane to below the midplane without significantly changing it's apparent lateral position.

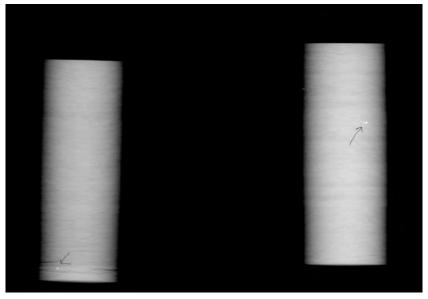


Figure 7. Higher density inclusions in ORNL archive ring blanks ARB-B1-Z006 (left) and ARB-B1-Z050 (right).

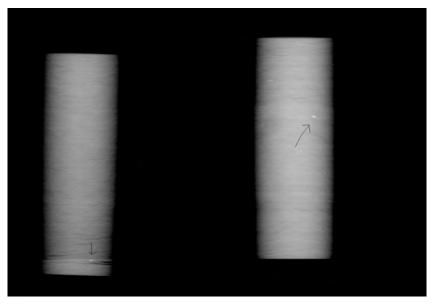


Figure 8. Same as Figure 7, but each cylinder has been rotated 45 degrees.

A higher resolution x-ray image of the fragment in ARB-B1-Z006 is shown in Figure 9. This image shows that the fragment was not spherical as would be expected if it was a fuel kernel. With help from high-resolution x-ray imaging, the fragment was exposed by grinding away the matrix carbon. Figure 10 shows a back-scattered electron image of the exposed region. Energy dispersive x-ray spectroscopy (EDS) identified the impurity as mostly Fe, with some Si and O (Figure 11).

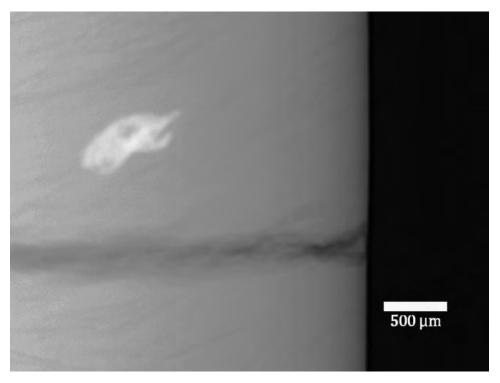


Figure 9. High resolution x-ray image of higher density inclusion in ARB-B1-Z006.

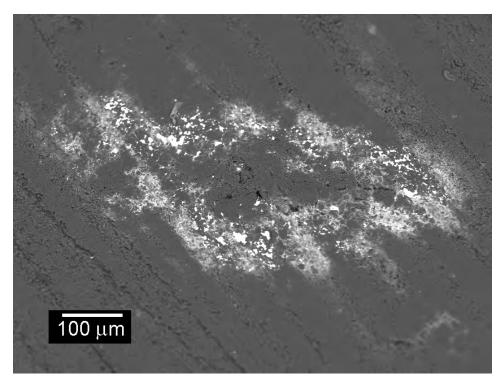


Figure 10. Back-scattered electron image of high Z impurity in ARB-B1-Z006 after grinding away matrix carbon to exposed area.

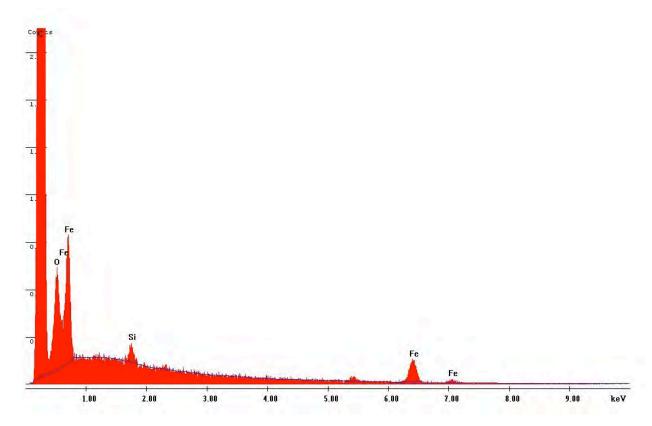


Figure 11. EDS spectra of impurity region in ARB-B1-Z006.

A higher resolution x-ray image of the fragment in ARB-B1-Z034 is shown in Figure 12. This fragment was also not spherical and seemed to be aligned with the fissures. EDS analysis (Figure 13) showed mostly Si.

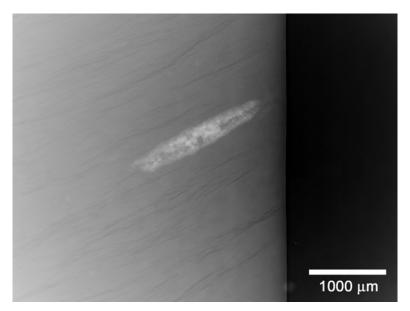


Figure 12. High resolution x-ray image of higher density inclusion in ARB-B1-Z034.

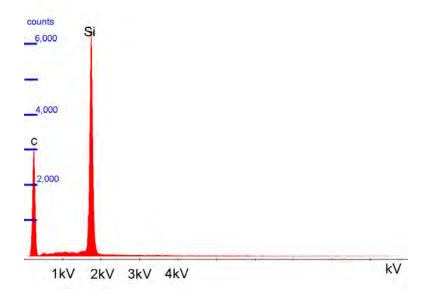


Figure 13. EDS spectra of impurity region in ARB-B1-Z034.

Ring blank ARB-B1-Z050 was analyzed by burn-leach. Uranium content in the first leach was relatively low at $2.37~\mu g$ or 0.041~ppmw. This is equivalent to the amount of uranium detected in the least contaminated analysis set in Table 10, which indicates that the observed high density fragment did not contain uranium. Subsequent leaches or microwave digestion was not performed.

2) Consideration of the possibility that contamination was transferred to the ring blanks during heat-treatment.

Uranium contamination in the tube furnace used for carbonization is unlikely given that a new quartz tube was used for this process. Uranium contamination in the graphite furnace used for heat-treatment to 1800°C is possible and has been identified as a concern based on previous analyses of fuel compacts, but a rigorous study to address the issue has not been performed. The heat-treatment furnace has been used for fabrication of fuel compacts and other fuel development studies which have resulted in contamination of the graphite internals. It was expected that this might introduce a small amount of uranium contamination in the ring blanks, but that the levels of contamination would be acceptable. To minimize possible contamination from the graphite internals, samples were placed within a graphite vessel with a loose fitting lid to allow for evacuation and backfilling with Ar.

RDKRS ring blanks were heat-treated in a single graphite vessel. However, because of a need to accelerate work to hold schedule, two graphite vessels were used for the ARB-B1 ring blank heat-treatment. One was the same graphite vessel used for the RDKRS ring blanks, but AGR-3/4 fuel compacts were heat-treated in this vessel between the RDKRS and ARB-B1 fabrication campaigns. Because the AGR-3/4 compacts contained DTF particles, it is possible that some uranium was transferred to the inside of the graphite vessel during this heat-treatment. The other graphite vessel had been used previously to study the performance of AGR-3/4 DTF particles during heat-treatment. Some of the DTF kernels were exposed during these tests, so it is likely that the graphite vessel became internally contaminated with uranium.

Table 11 lists the total uranium content and the ratio of U-235 to total U measured from the first leach of the RDKRS ring blanks, which were fabricated prior to the ARB-B1 ring blanks. About 90% of the uranium content in the RDKRS ring blanks was detected in the first leach. Given the total uranium content measured in the ring blanks (U_{Total}) and the average enrichment of the uranium detected (E), it is possible to calculate the amount of low enriched uranium (LEU) and natural uranium (NU) in each sample by assuming that the uranium was present as either NU with 0.71% U-235 (coming from the natural graphite) or LEU with 19.7% U-235 (coming from the AGR-3/4 fuel).

$$LEU = \frac{E - 0.71\%}{19.7\% - 0.71\%} U_{Total}$$

$$NU = U_{Total} - LEU = \frac{19.7\% - E}{19.7\% - 0.71\%} U_{Total}$$

From these calculations (Table 11), it appears that the majority of the uranium impurity in the RDKRS ring blanks came from the natural graphite. Note that the calculated content of NU was reasonably consistent for the 4 sample groups, which supports the conclusion that it came from the starting material. The LEU contamination picked up during heat-treatment was low compared to what was apparently already in the natural graphite and compared to the specified limit of ≤ 0.5 ppmw U.

Table 11. Uranium contamination from first leach of RDKRS ring blanks

Analysis Group	Ring Blank IDs	U in First Leach ppmw	Enrichment U-235/U	LEU ppmw	NU ppmw
В	Z026,Z015,Z014	0.0155	6.5	0.0047	0.0108
С	Z003,Z041,Z025	0.0185	8.0	0.0071	0.0114
D	Z035,Z027,Z040	0.0137	4.9	0.0030	0.0107
E	Z019,Z036,Z044	0.0136	4.6	0.0028	0.0108

Table 12 through Table 14 list the total uranium content and the average enrichment measured from the first leach, second leach, and microwave digestion of the ARB-B1 ring blanks. Acid leaching was less efficient for the ARB-B1 ring blanks. With the exception of sample group D, about 65% of the total uranium content was detected in the first leach, 3% in the second leach, and 32% in the microwave digestion, and these fractions were fairly consistent from group to group. The calculated NU content was in good agreement for the first 3 sample groups. Sample group E had a higher calculated NU content than the other groups, and this discrepancy appeared to be real based on the fact that the relative fraction of NU detected at each step in the analysis was consistent with the other sample groups. The calculated NU content in the ARB-B1 ring blanks was 3-4x higher than observed for the RDKRS ring blanks. This is in agreement with observations that several impurities in the ARB-B1 natural graphite were also 3-4x higher than in the RDKRS natural graphite. For the set of ring blanks that showed an abnormally high uranium content, it is clear from the data that this uranium contamination came from a source that was around 19.7% enrichment. It is also significant that the other 3 ring blank sample groups also appeared to have a measurably higher LEU content compared to the RDKRS ring blanks. This indicates that the contamination may have been worse for this second set of ring blanks.

Table 12. Uranium contamination from first leach of ARB-B1 ring blanks

Analysis	Ring Blank IDs	U in First Leach	Enrichment	LEU	NU
Group	Killg blalik iDs	ppmw	U-235/U	ppmw	ppmw
В	Z026,Z015,Z014	0.0709	11.9	0.042	0.029
C	Z003,Z041,Z025	0.0414	8.8	0.018	0.024
D	Z035,Z027,Z040	1.865	19.4	1.836	0.029
E	Z019,Z036,Z044	0.0832	7.9	0.032	0.052

Table 13. Uranium contamination from second leach of ARB-B1 ring blanks

Analysis Group	Ring Blank IDs	U in First Leach ppmw	Enrichment U-235/U	LEU ppmw	NU ppmw
В	Z026,Z015,Z014	0.0036	11.6	0.0021	0.0015
C	Z003,Z041,Z025	0.0023	9.8	0.0011	0.0012
D	Z035,Z027,Z040	0.0599	19.4	0.0590	0.0009
E	Z019,Z036,Z044	0.0049	7.9	0.0019	0.0030

Table 14. Uranium contamination from microwave digestion of ARB-B1 ring blanks

Analysis Group	Ring Blank IDs	U in First Leach ppmw	Enrichment U-235/U	LEU ppmw	NU ppmw
В	Z026,Z015,Z014	0.0328	10.2	0.016	0.016
С	Z003,Z041,Z025	0.0225	7.8	0.008	0.014
D	Z035,Z027,Z040	0.0290	11.8	0.017	0.012
Е	Z019,Z036,Z044	0.0388	8.8	0.017	0.022

The ARB-B1 ring blanks were randomly assigned Z-numbers as part of the product inspection plan, to support random QC sampling. The original G-number for each ring blank, which is associated with the actual fabrication order, is shown in Table 15. This table also indicates the carbonization and heat-treatment batch for each ring blank and whether each ring blank was used for burn-leach analysis, sent to INL, or retained in the ORNL archive (Group A). Analysis Group D was the one that was found to have a higher than average uranium content. This group contained ARB-B1-Z041(G010), which was the earliest fabricated ring blank of the 12 analyzed. If contamination was being transferred from a graphite vessel, this may have tapered off with each successive use and ring blanks fabricated early in the campaign may have been contaminated at higher levels. ARB-B1-Z041(G010) was the only ring blank analyzed from the second heat-treatment and none were analyzed from the first. Group D also contained ARB-B1-Z027(G018) and ARB-B1-Z035(G047). These two ring blanks came from carbonization and heat-treatment batches that were incidentally sampled by ring blanks in Group E, which was determined to have an acceptable level of uranium contamination (0.127 ppmw).

Table 15. Fabrication summary for ARB-B1 ring blanks

Z-number G-number		Carbonization Batch	Heat-treatment Batch	Analysis Group	At ORNL	At INL			
Z011	G001	1	1	-		X			
Z021	G002	1	1			X			
Z002	G003	1	1			X			
Z045	G005	2	2			X			
Z004	G006	2	2			X			
Z042	G007	2	2			X			
Z024	G008	2	2			X			
Z043	G009	3	2			X			
Z040	G010	3	2	D					
Z049	G011	3	2		A				
Z003	G012	3	3	С					
Z015	G013	4	3	В					
Z009	G014	4	3			X			
Z032	G015	4	3			X			
Z019	G016	4	3	Е					
Z017	G017	4	3			X			
Z027	G018	4	3	D					
Z029	G019	4	3			X			
Z028	G020	4	4			X			
Z038	G021	5	4		A				
Z047	G022	5	4			X			
Z001	G023	5	4			X			
Z031	G024	5	4			X			
Z005	G025	5	4			X			
Z023	G026	5	4			X			
Z022	G027	5	4			X			
Z020	G028	5	4			X			
Z008	G029	6	4		A	A			
Z046	G030	6	4		7.	X			
Z010	G031	6	5			X			
Z018	G032	6	5			X			
Z048	G033	6	5			X			
Z039	G034	6	5			X			
Z050	G035	6	5		A	Λ			
Z013	G036	6	5		Λ	v			
Z013 Z007	G030 G037	7	5			X X			
Z014	G037	7	5	В		Λ			
Z033	G039	7	5	ь		X			
Z036	G040	7	5	Е		Λ			
Z006	G040 G041	7	5	L	A				
Z006 Z026	G041 G042	7	6	В	Λ				
Z026 Z041	G042 G043	7	6	C					
Z041 Z034	G043 G044	7	6	C	+	37			
Z034 Z044	G044 G045	8	6	Е		X			
Z044 Z012	G045 G046	8	6	Е	A				
Z012 Z035	G046 G047	8	6	D	A				
Z035 Z030	G047 G049	8	6	ע	Α				
Z030 Z037	G049 G050	8	6		A				
Z03 / Z016	G050 G051	8	6		A	X			
2010	G051 G052	8	6	С	A				

Ring blanks ARB-B1-Z011(G001) and ARB-B1-Z042(G007) were returned from INL to ORNL. These two ring blanks, along with ARB-B1-Z049(G011), were subjected to burn-leach analysis in order to sample additional ring blanks from the first two carbonization and heat-treatment batches and address the possibility of higher contamination levels in ring blanks fabricated at the beginning of the campaign. Table 16 shows the U content detected by the first leach. Subsequent leaches or microwave digestion was not performed. Ring blanks ARB-B1-Z011(G001) and ARB-B1-Z042(G007) both showed U contaminations that were lower than what was detected in the initial burn-leach analysis (Table 10). ARB-B1-Z049(G011) was equivalent to the amount of uranium detected in the least contaminated analysis set in Table 10. There was no indication that ring blanks fabricated around the time of ARB-B1-Z041(G010) had unusually high uranium content.

Table 16. Additional analysis for uranium contamination in ARB-B1 ring blanks

Ding Plank IDs	U in First Leach				
Ring Blank IDs	μg	ppmw			
ARB-B1-Z011(G001)	0.72	0.013			
ARB-B1-Z042(G007)	0.65	0.011			
ARB-B1-Z049(G011)	2.39	0.042			

It has been assumed thus far that contamination during heat-treatment would probably be dispersed in the blank and that contamination would occur equally to all ring blanks heat-treated together. It is also possible that uranium contamination could be transferred by contact to a heavily contaminated region within the graphite vessel. This would result in one or more ring blanks having a higher U content than others fabricated and heat-treated at the same time.

3) Consideration of the possibility that a particle got into the burn-leach vessel during analysis.

It is unlikely, but can't be ruled out, that a particle may have gotten inadvertently mixed in with the ring blanks during analysis. Care is taken during burn-leach analysis to prevent cross contamination. Ring blanks are rinsed and blown off prior to starting the analysis. Quartz vessels are carefully cleaned between uses. The vessels are covered and high purity air is brought in to provide additional oxygen during the burn. The most likely scenario for contamination of the analysis would be for a particle to be picked up by static in the glassware during assembly of the reflux apparatus prior to leaching. There is no way to determine whether or not the unusually high uranium content in Group D was related to contamination during analysis. However, the general trace LEU contamination discussed above can not be explained by contamination during analysis. The analysis performed prior to the ARB-B1 burn-leach was a burn-leach of the RDKRS machined matrix rings. Results of this prior analysis were more than an order of magnitude lower, indicating contamination from the test apparatus is very unlikely. The burn-leach on each set of samples was accompanied by a "blank" leach, where all analysis steps were performed in parallel using an empty vessel. The analyses of the blank yielded U contamination values significantly lower than those observed for the ring blanks (0.1-0.2 µg U).

Conclusions

Additional analysis was performed in an attempt to determine the source of the unusually high uranium content observed in one group of 3 ring blanks, compared to that observed for three other groups of 3 ring blanks each analyzed at the same time. Results were inconclusive in regards to what mechanism caused the observed high level of contamination or whether any other ring blanks were similarly affected.

X-ray analysis did not find any localized uranium contamination in any of the ring blanks not already destructively analyzed for the initial impurity analysis. Several non-graphite fragments were detected, but these were not uranium-bearing particles. The fact that these other small fragments could be detected demonstrated that the x-ray imaging had sufficient resolution to detect a similarly sized single particle of uranium contamination, if present. If the observed uranium contamination was related to a uranium bearing particle, such as an AGR-3/4 TRISO fuel or DTF particle, then it was an isolated anomaly and all other ARB-B1 ring blanks appear to be free of this defect.

Analysis and comparison of the burn-leach data to that obtained for the RDKRS ring blanks indicated that some general uranium impurity was present in all of the ARB-B1 ring blanks. The uranium impurity appeared to be a combination of natural uranium from the natural graphite and low enriched uranium from heat-treatment furnace contamination. There was no indication that the unusually high LEU contamination observed in the one offending sample group was related to any systematic trend in the fabrication order or heat-treatment grouping. Ignoring the unusually high result for the one sample group gives an average uranium content of 0.10 ppmw with a standard deviation of 0.03 ppmw. Although this is below the specified limit of ≤0.5 ppmw at 95% confidence, it is considerably higher than that observed for the RDKRS ring blanks (0.017 ppmw). This higher average uranium content in the ARB-B1 ring blanks was apparently due in part to a higher NU content in the natural graphite, as well as a higher LEU contamination level. The generally higher LEU content in the ARB-B1 ring blanks indicates a possibly worsening uranium contamination condition in the graphite heat-treatment furnace.

The observation of an unusually high uranium content in one of the four original burn-leach samples appears to be an anomaly, occurring either during fabrication or during analysis. It can not be concluded whether any other ring blanks may also have a uranium impurity content above the specified limit, but it is statistically favorable, based on the available data, to assume that no more than a few of the ring blanks would exhibit a uranium content significantly above the average of 0.10 ppmw obtained from the other 3 samples groups analyzed.

Appendix D: Certificate of Conformance

On the following page is a copy of the Certificate of Conformance for the AGR-3/4 ARB-B1 ring blank lot. This is a record of the review by Quality Assurance personnel that specified requirements have been met or that any non-conformances to those requirements has been documented. The ARB-B1 matrix ring blank set did not meet all the product specifications for compact matrix ring blanks in section 1.05 of the AGR-3/4 DTF Fuel and Capsule Component Material Specifications (SPC-1214, Rev. 1). Three non-conformance reports were issued (see Appendices A - C).

Oak Ridge National Laboratory Advanced Gas Reactor (AGR) Fuel Development and Qualification Program CERTIFICATE OF CONFORMANCE

1. ITEM IDENTIFICATION: AGR-3/4 Ring Blanks

2. PART LOT AND LOT NUMBER: ARB-B1-Z

3. PRODUCT DEFINITION: INL Document SPC-1214, Revision 1 entitled

AGR-3/4 DTF Fuel and Capsule Component Material Specifications

4. LIST OF APPROVED DEVIATIONS: Not Applicable

*Part Type	Unique Part I.D. No.	Qty.	Init.	Date	*Part Type	Unique Part I.D. No.	Qty.	Init.	Date
RB	ARB-B1-Z001	1	mal	9/15/11	RB	ARB-B1-Z024	1	MU	9/15/1
RB	ARB-B1-Z002	1	(17	RB	ARB-B1-Z028	1		1
RB	ARB-B1-Z004	1			RB	ARB-B1-Z029	1		- /
RB	ARB-B1-Z005	1			RB	ARB-B1-Z031	1		
RB	ARB-B1-Z007	1			RB	ARB-B1-Z032	1		-
RB	ARB-B1-Z009	1			RB	ARB-B1-Z033	1		
RB	ARB-B1-Z010	1			RB	ARB-B1-Z034	1		
RB	ARB-B1-Z011	1			RB	ARB-B1-Z037	1		
RB	ARB-B1-Z013	1			RB	ARB-B1-Z039	1		
RB	ARB-B1-Z017	1			RB	ARB-B1-Z042	1		
RB	ARB-B1-Z018	1			RB	ARB-B1-Z043	1		
RB	ARB-B1-Z020	1			RB	ARB-B1-Z045	1		
RB	ARB-B1-Z021	1			RB	ARB-B1-Z046	1		/
RB	ARB-B1-Z022	1			RB	ARB-B1-Z047	1		
RB	ARB-B1-Z023	1			RB	ARB-B1-Z048	1		

5. LIST OF APPLICABLE NONCONFORMANCE REPORT NUMBERS:

NCR-X-AGR-11-01: Non-Conformance Report for Matrix Density

NCR-X-AGR-11-02: Non-Conformance Report for Al Content

NCR-X-AGR-11-03: Non-Conformance Report for U Contamination

With the exception of the Deviations documented on the forms referenced in Item 4 and the nonconforming conditions documented on Nonconformance Reports referenced in Item 5, the listed parts have been produced and tested in compliance to the requirements of the Quality Assurance Plan (QAP) for the AGR Program at ORNL (Document # QAP-ORNL-AGR-01), its subordinate implementing procedures, and to the specified product definition prescribed in the document(s) referenced in Item 3.

M. C. Vance, AGR Quality Representative, ORNL

* RB indicates ring blank